Spaces:
Runtime error
Runtime error
File size: 2,268 Bytes
fc95975 4bbaeac fc95975 f622ed0 4bbaeac 4f5af5a 4bbaeac 4f5af5a 4bbaeac f622ed0 4bbaeac 4f5af5a 4bbaeac 4f5af5a 4bbaeac 4f5af5a 4bbaeac f622ed0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
import streamlit as st
import json
import pandas as pd
import numpy as np
st.title('5k English documents from Oscar with their stats.')
path_data = "./10K_english_examples_with_stats.json"
with open(path_data) as json_file:
data = json.load(json_file)
data = data[:5000]
data = pd.DataFrame(data)
del data["len_words"]
st.header('Parameters of the filtering')
cutoff_special_characters_ratio = st.slider("Max cutoff special characters ratio", 0., 1., 1., step=0.01)
cutoff_stopwords_ratio = st.slider("Min cutoff stopwords ratio", 0., 1., 0., step=0.01)
cutoff_badwords_ratio = st.slider("Max cutoff badwords ratio", 0., 1., 1., step=0.001)
cutoff_lang_id_score = st.slider("Min cutoff lang id score", 0., 1., 0., step=0.01)
cutoff_perplexity_score = st.slider("Perplexity cutoff perplexity score", 0, 14000000, 14000000)
keys = [
("special_characters_ratio", cutoff_special_characters_ratio, True),
("stopwords_ratio", cutoff_stopwords_ratio, False),
("badwords_ratio", cutoff_badwords_ratio, True),
("lang_id_score", cutoff_lang_id_score, False),
("perplexity_score", cutoff_perplexity_score, True),
]
cond = [(data[key] <= cutoff) if max_cutoff else (data[key] >= cutoff) for key, cutoff, max_cutoff in keys]
cond = np.all(cond, axis=0)
data_keep = data.loc[cond]
st.header('Data that we keep')
st.markdown("Click on a column to sort by it.")
st.markdown("Place the cursor on the text to display it.")
st.dataframe(data_keep)
data_not_keep = data.loc[np.invert(cond)]
st.header('Data that is thrown away')
st.markdown("Click on a column to sort by it.")
st.markdown("Place the cursor on the text to display it.")
st.dataframe(data_not_keep)
def plot_hist(key, num_bins=50):
st.header(" ".join(key.split("_")))
hist_values = data[key].values
max_range = np.max(hist_values)
hist_values = np.histogram(
hist_values,
bins=num_bins,
range=(0,max_range)
)[0]
st.bar_chart(hist_values)
st.markdown(f"Each bin is of size: {max_range/num_bins}.")
for key, _, _ in keys:
plot_hist(key)
st.header('Download data')
with open(path_data) as json_file:
btn = st.download_button(
label="Download data as json",
data=json_file,
file_name='data.json',
)
|