File size: 10,299 Bytes
0add2d4
 
fc95975
0add2d4
4bbaeac
 
0add2d4
4bbaeac
0add2d4
ffdfff7
fc95975
f622ed0
0add2d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffdfff7
0add2d4
 
 
 
ffdfff7
0add2d4
 
 
 
 
ffdfff7
0add2d4
 
 
 
 
 
 
 
 
 
ffdfff7
0add2d4
 
 
 
 
 
 
 
ffdfff7
0add2d4
 
 
 
 
 
 
 
 
 
 
 
 
ffdfff7
0add2d4
 
 
 
 
 
 
 
 
ffdfff7
0add2d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffdfff7
0add2d4
 
ffdfff7
0add2d4
f924b14
0add2d4
 
 
 
 
 
 
 
a446a8b
0add2d4
 
a446a8b
0add2d4
 
 
 
a446a8b
0add2d4
 
 
 
 
 
 
a446a8b
0add2d4
a446a8b
0add2d4
 
 
 
 
 
 
 
 
 
 
ffdfff7
0add2d4
 
 
 
 
ffdfff7
0add2d4
 
ffdfff7
0add2d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffdfff7
 
0add2d4
ffdfff7
0add2d4
 
 
ffdfff7
0add2d4
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
# Run with: streamlit run visualization.py

import streamlit as st

import json
import pandas as pd

import numpy as np

import matplotlib.pyplot as plt


class Visualization:
    def __init__(
        self, path_data, lang, num_docs, num_docs_for_words, max_len_text_display
    ):
        self.path_data = path_data
        self.lang = lang
        self.num_docs = num_docs
        self.num_docs_for_words = num_docs_for_words
        self.max_len_text_display = max_len_text_display

    def open_data(self):
        with open(self.path_data) as json_file:
            data = json.load(json_file)

        self.num_docs = min(self.num_docs, len(data))
        self.num_docs_for_words = min(self.num_docs_for_words, len(data))

        words = [doc["words"] for doc in data[: self.num_docs_for_words]]
        words = [word for doc in words for word in doc]
        self.words = pd.DataFrame(words)

        docs = data[: self.num_docs]
        for doc in docs:
            del doc["words"]
            if len(doc["text"]) > self.max_len_text_display:
                doc["text"] = (
                    doc["text"][: self.max_len_text_display]
                    + " [...] [THIS LONG TEXT HAS BEEN TRUNCATED FOR DISPLAY REASONS]"
                )
        self.docs = pd.DataFrame(docs)

    def set_title(self):
        st.title(f"{self.num_docs} {self.lang} documents from Oscar with their stats.")

    def filtering_of_docs(self):
        st.sidebar.subheader("Parameters of the filtering on documents")

        def set_sliders(docs):
            columns = list(docs)
            keys = []
            conds = []

            def get_cond(key, cutoff, max_cutoff):
                if max_cutoff:
                    return self.docs[key] <= cutoff
                return self.docs[key] >= cutoff

            def print_discared_by_cond(cond):
                st.sidebar.caption(
                    f"{(len(cond) - np.sum(1*cond)) / len(cond) * 100:.2f}% of the total is discarded with this filter"
                )
                st.sidebar.caption("---------")

            if "number_words" in columns:
                max_nb_words = int(np.max(docs["number_words"])) + 1
                cutoff_min_number_words = st.sidebar.slider(
                    "Min cutoff number words", 0, max_nb_words, 0
                )
                new_key = ("number_words", cutoff_min_number_words, False)
                keys.append(new_key)
                cond = get_cond(new_key[0], new_key[1], new_key[2])
                conds.append(cond)
                print_discared_by_cond(cond)

                cutoff_max_number_words = st.sidebar.slider(
                    "Max cutoff number words", 0, max_nb_words, max_nb_words
                )
                new_key = ("number_words", cutoff_max_number_words, True)
                keys.append(new_key)
                cond = get_cond(new_key[0], new_key[1], new_key[2])
                conds.append(cond)
                print_discared_by_cond(cond)

            if "special_characters_ratio" in columns:
                cutoff_special_characters_ratio = st.sidebar.slider(
                    "Max cutoff special characters ratio", 0.0, 1.0, 1.0, step=0.01
                )
                new_key = (
                    "special_characters_ratio",
                    cutoff_special_characters_ratio,
                    True,
                )
                keys.append(new_key)
                cond = get_cond(new_key[0], new_key[1], new_key[2])
                conds.append(cond)
                print_discared_by_cond(cond)

            if "stopwords_ratio" in columns:
                cutoff_stopwords_ratio = st.sidebar.slider(
                    "Min cutoff stopwords ratio", 0.0, 1.0, 0.0, step=0.01
                )
                new_key = ("stopwords_ratio", cutoff_stopwords_ratio, False)
                keys.append(new_key)
                cond = get_cond(new_key[0], new_key[1], new_key[2])
                conds.append(cond)
                print_discared_by_cond(cond)

            if "badwords_ratio" in columns:
                cutoff_badwords_ratio = st.sidebar.slider(
                    "Max cutoff badwords ratio", 0.0, 1.0, 1.0, step=0.01
                )
                new_key = ("badwords_ratio", cutoff_badwords_ratio, True)
                keys.append(new_key)
                cond = get_cond(new_key[0], new_key[1], new_key[2])
                conds.append(cond)
                print_discared_by_cond(cond)

            if "lang_id_score" in columns:
                cutoff_lang_id_score = st.sidebar.slider(
                    "Min cutoff lang id score", 0.0, 1.0, 0.0, step=0.01
                )
                new_key = ("lang_id_score", cutoff_lang_id_score, False)
                keys.append(new_key)
                cond = get_cond(new_key[0], new_key[1], new_key[2])
                conds.append(cond)
                print_discared_by_cond(cond)

            if "perplexity_score" in columns:
                max_pp = int(np.max(docs["perplexity_score"])) + 1
                cutoff_perplexity_score = st.sidebar.slider(
                    "Perplexity cutoff perplexity score", 0, max_pp, max_pp
                )
                new_key = ("perplexity_score", cutoff_perplexity_score, True)
                keys.append(new_key)
                cond = get_cond(new_key[0], new_key[1], new_key[2])
                conds.append(cond)
                print_discared_by_cond(cond)

            return keys, conds

        self.keys, conds = set_sliders(self.docs)

        conds = np.all(conds, axis=0)

        st.header("Filtering on documents")

        self.discarded_docs = self.docs.loc[np.invert(conds)]
        st.subheader(
            f"Discarded documents: {len(self.discarded_docs)} docs ({len(self.discarded_docs) / self.num_docs * 100:.2f}%)"
        )
        st.markdown(
            "Click on a column to sort by it, place the cursor on the text to display it."
        )
        st.dataframe(self.discarded_docs)

        self.retained_docs = self.docs.loc[conds]
        st.subheader(
            f"Retained documents: {len(self.retained_docs)} docs ({len(self.retained_docs) / self.num_docs * 100:.2f}%)"
        )
        st.markdown(
            "Click on a column to sort by it, place the cursor on the text to display it."
        )
        st.dataframe(self.retained_docs)

    def filtering_of_words(self):
        st.sidebar.subheader("Parameter of the filtering on words")

        max_len_word = int(np.max(self.words["len_word"])) + 1
        cutoff_word = st.sidebar.slider(
            "Max cutoff length word", 0, max_len_word, max_len_word
        )

        incorrect_substrings = st.sidebar.checkbox(
            "Remove words with incorrect substrings"
        )

        cond_words = self.words["len_word"] <= cutoff_word
        if incorrect_substrings:
            cond_words = cond_words & np.invert(self.words["incorrect_substring"])

        st.header("Filtering on words")

        st.markdown(
            f"Since the number of words is way larger than the number of documents, "
            f"we consider in this section words for the first {self.num_docs_for_words} documents only."
        )

        discarded_words = self.words.loc[np.invert(cond_words)]
        st.subheader(
            f"Discarded words: {len(discarded_words)} words ({len(discarded_words) / len(self.words) * 100:.2f}%)"
        )
        st.markdown(
            "Click on a column to sort by it, place the cursor on the text to display it."
        )
        st.dataframe(discarded_words)

        retained_words = self.words.loc[cond_words]
        st.subheader(
            f"Retained words: {len(retained_words)} words ({len(retained_words) / len(self.words) * 100:.2f}%)"
        )
        st.markdown(
            "Click on a column to sort by it, place the cursor on the text to display it."
        )
        st.dataframe(retained_words)

    def plot_distributions_filtering_parameters(self):
        st.header("Distributions of the filtering parameters")

        display_distributions = st.checkbox("Display distributions")

        if display_distributions:

            def plot_hist(dataframe, key, num_bins=50):
                st.subheader(" ".join(key.split("_")))
                hist_values = dataframe[key].values
                max_range = np.max(hist_values)
                hist_values = np.histogram(
                    hist_values, bins=num_bins, range=(0, max_range)
                )[0]
                st.bar_chart(hist_values)
                st.markdown(f"Each bin is of size: {max_range/num_bins}.")

            for key in list({el[0]: None for el in self.keys}):
                plot_hist(self.docs, key)

            plot_hist(self.words, "len_word")

    def plot_zipf_law(self):
        st.header("Zipf's Law")

        display_zipf_law = st.checkbox("Display Zipf's Law")

        if display_zipf_law:

            freq_words = {}
            for _, row in self.words.iterrows():
                freq_words[row["word"]] = freq_words.get(row["word"], 0) + 1
            freq_words = np.array(list(freq_words.values()))
            freq_words = -np.sort(-freq_words)

            fig, ax = plt.subplots()
            ax.loglog(freq_words)
            ax.set_title("Zipf's Law")
            ax.set_xlabel("$i$-th most frequent word")
            ax.set_ylabel("frequency in the documents")
            st.pyplot(fig)

    def download_data(self):
        st.header("Download data")

        with open(self.path_data) as json_file:
            btn = st.download_button(
                label="Download data as json",
                data=json_file,
                file_name="data.json",
            )

    def visualization(self):
        self.open_data()
        self.set_title()
        self.filtering_of_docs()
        self.filtering_of_words()
        self.plot_distributions_filtering_parameters()
        self.plot_zipf_law()
        self.download_data()


path_data = "./en_examples_with_stats.json"
lang = "English"
num_docs = 15000
num_docs_for_words = 1500
max_len_text_display = 10000

visualization = Visualization(
    path_data, lang, num_docs, num_docs_for_words, max_len_text_display
)
visualization.visualization()