Spaces:
Runtime error
Runtime error
File size: 10,299 Bytes
0add2d4 fc95975 0add2d4 4bbaeac 0add2d4 4bbaeac 0add2d4 ffdfff7 fc95975 f622ed0 0add2d4 ffdfff7 0add2d4 ffdfff7 0add2d4 ffdfff7 0add2d4 ffdfff7 0add2d4 ffdfff7 0add2d4 ffdfff7 0add2d4 ffdfff7 0add2d4 ffdfff7 0add2d4 ffdfff7 0add2d4 f924b14 0add2d4 a446a8b 0add2d4 a446a8b 0add2d4 a446a8b 0add2d4 a446a8b 0add2d4 a446a8b 0add2d4 ffdfff7 0add2d4 ffdfff7 0add2d4 ffdfff7 0add2d4 ffdfff7 0add2d4 ffdfff7 0add2d4 ffdfff7 0add2d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
# Run with: streamlit run visualization.py
import streamlit as st
import json
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
class Visualization:
def __init__(
self, path_data, lang, num_docs, num_docs_for_words, max_len_text_display
):
self.path_data = path_data
self.lang = lang
self.num_docs = num_docs
self.num_docs_for_words = num_docs_for_words
self.max_len_text_display = max_len_text_display
def open_data(self):
with open(self.path_data) as json_file:
data = json.load(json_file)
self.num_docs = min(self.num_docs, len(data))
self.num_docs_for_words = min(self.num_docs_for_words, len(data))
words = [doc["words"] for doc in data[: self.num_docs_for_words]]
words = [word for doc in words for word in doc]
self.words = pd.DataFrame(words)
docs = data[: self.num_docs]
for doc in docs:
del doc["words"]
if len(doc["text"]) > self.max_len_text_display:
doc["text"] = (
doc["text"][: self.max_len_text_display]
+ " [...] [THIS LONG TEXT HAS BEEN TRUNCATED FOR DISPLAY REASONS]"
)
self.docs = pd.DataFrame(docs)
def set_title(self):
st.title(f"{self.num_docs} {self.lang} documents from Oscar with their stats.")
def filtering_of_docs(self):
st.sidebar.subheader("Parameters of the filtering on documents")
def set_sliders(docs):
columns = list(docs)
keys = []
conds = []
def get_cond(key, cutoff, max_cutoff):
if max_cutoff:
return self.docs[key] <= cutoff
return self.docs[key] >= cutoff
def print_discared_by_cond(cond):
st.sidebar.caption(
f"{(len(cond) - np.sum(1*cond)) / len(cond) * 100:.2f}% of the total is discarded with this filter"
)
st.sidebar.caption("---------")
if "number_words" in columns:
max_nb_words = int(np.max(docs["number_words"])) + 1
cutoff_min_number_words = st.sidebar.slider(
"Min cutoff number words", 0, max_nb_words, 0
)
new_key = ("number_words", cutoff_min_number_words, False)
keys.append(new_key)
cond = get_cond(new_key[0], new_key[1], new_key[2])
conds.append(cond)
print_discared_by_cond(cond)
cutoff_max_number_words = st.sidebar.slider(
"Max cutoff number words", 0, max_nb_words, max_nb_words
)
new_key = ("number_words", cutoff_max_number_words, True)
keys.append(new_key)
cond = get_cond(new_key[0], new_key[1], new_key[2])
conds.append(cond)
print_discared_by_cond(cond)
if "special_characters_ratio" in columns:
cutoff_special_characters_ratio = st.sidebar.slider(
"Max cutoff special characters ratio", 0.0, 1.0, 1.0, step=0.01
)
new_key = (
"special_characters_ratio",
cutoff_special_characters_ratio,
True,
)
keys.append(new_key)
cond = get_cond(new_key[0], new_key[1], new_key[2])
conds.append(cond)
print_discared_by_cond(cond)
if "stopwords_ratio" in columns:
cutoff_stopwords_ratio = st.sidebar.slider(
"Min cutoff stopwords ratio", 0.0, 1.0, 0.0, step=0.01
)
new_key = ("stopwords_ratio", cutoff_stopwords_ratio, False)
keys.append(new_key)
cond = get_cond(new_key[0], new_key[1], new_key[2])
conds.append(cond)
print_discared_by_cond(cond)
if "badwords_ratio" in columns:
cutoff_badwords_ratio = st.sidebar.slider(
"Max cutoff badwords ratio", 0.0, 1.0, 1.0, step=0.01
)
new_key = ("badwords_ratio", cutoff_badwords_ratio, True)
keys.append(new_key)
cond = get_cond(new_key[0], new_key[1], new_key[2])
conds.append(cond)
print_discared_by_cond(cond)
if "lang_id_score" in columns:
cutoff_lang_id_score = st.sidebar.slider(
"Min cutoff lang id score", 0.0, 1.0, 0.0, step=0.01
)
new_key = ("lang_id_score", cutoff_lang_id_score, False)
keys.append(new_key)
cond = get_cond(new_key[0], new_key[1], new_key[2])
conds.append(cond)
print_discared_by_cond(cond)
if "perplexity_score" in columns:
max_pp = int(np.max(docs["perplexity_score"])) + 1
cutoff_perplexity_score = st.sidebar.slider(
"Perplexity cutoff perplexity score", 0, max_pp, max_pp
)
new_key = ("perplexity_score", cutoff_perplexity_score, True)
keys.append(new_key)
cond = get_cond(new_key[0], new_key[1], new_key[2])
conds.append(cond)
print_discared_by_cond(cond)
return keys, conds
self.keys, conds = set_sliders(self.docs)
conds = np.all(conds, axis=0)
st.header("Filtering on documents")
self.discarded_docs = self.docs.loc[np.invert(conds)]
st.subheader(
f"Discarded documents: {len(self.discarded_docs)} docs ({len(self.discarded_docs) / self.num_docs * 100:.2f}%)"
)
st.markdown(
"Click on a column to sort by it, place the cursor on the text to display it."
)
st.dataframe(self.discarded_docs)
self.retained_docs = self.docs.loc[conds]
st.subheader(
f"Retained documents: {len(self.retained_docs)} docs ({len(self.retained_docs) / self.num_docs * 100:.2f}%)"
)
st.markdown(
"Click on a column to sort by it, place the cursor on the text to display it."
)
st.dataframe(self.retained_docs)
def filtering_of_words(self):
st.sidebar.subheader("Parameter of the filtering on words")
max_len_word = int(np.max(self.words["len_word"])) + 1
cutoff_word = st.sidebar.slider(
"Max cutoff length word", 0, max_len_word, max_len_word
)
incorrect_substrings = st.sidebar.checkbox(
"Remove words with incorrect substrings"
)
cond_words = self.words["len_word"] <= cutoff_word
if incorrect_substrings:
cond_words = cond_words & np.invert(self.words["incorrect_substring"])
st.header("Filtering on words")
st.markdown(
f"Since the number of words is way larger than the number of documents, "
f"we consider in this section words for the first {self.num_docs_for_words} documents only."
)
discarded_words = self.words.loc[np.invert(cond_words)]
st.subheader(
f"Discarded words: {len(discarded_words)} words ({len(discarded_words) / len(self.words) * 100:.2f}%)"
)
st.markdown(
"Click on a column to sort by it, place the cursor on the text to display it."
)
st.dataframe(discarded_words)
retained_words = self.words.loc[cond_words]
st.subheader(
f"Retained words: {len(retained_words)} words ({len(retained_words) / len(self.words) * 100:.2f}%)"
)
st.markdown(
"Click on a column to sort by it, place the cursor on the text to display it."
)
st.dataframe(retained_words)
def plot_distributions_filtering_parameters(self):
st.header("Distributions of the filtering parameters")
display_distributions = st.checkbox("Display distributions")
if display_distributions:
def plot_hist(dataframe, key, num_bins=50):
st.subheader(" ".join(key.split("_")))
hist_values = dataframe[key].values
max_range = np.max(hist_values)
hist_values = np.histogram(
hist_values, bins=num_bins, range=(0, max_range)
)[0]
st.bar_chart(hist_values)
st.markdown(f"Each bin is of size: {max_range/num_bins}.")
for key in list({el[0]: None for el in self.keys}):
plot_hist(self.docs, key)
plot_hist(self.words, "len_word")
def plot_zipf_law(self):
st.header("Zipf's Law")
display_zipf_law = st.checkbox("Display Zipf's Law")
if display_zipf_law:
freq_words = {}
for _, row in self.words.iterrows():
freq_words[row["word"]] = freq_words.get(row["word"], 0) + 1
freq_words = np.array(list(freq_words.values()))
freq_words = -np.sort(-freq_words)
fig, ax = plt.subplots()
ax.loglog(freq_words)
ax.set_title("Zipf's Law")
ax.set_xlabel("$i$-th most frequent word")
ax.set_ylabel("frequency in the documents")
st.pyplot(fig)
def download_data(self):
st.header("Download data")
with open(self.path_data) as json_file:
btn = st.download_button(
label="Download data as json",
data=json_file,
file_name="data.json",
)
def visualization(self):
self.open_data()
self.set_title()
self.filtering_of_docs()
self.filtering_of_words()
self.plot_distributions_filtering_parameters()
self.plot_zipf_law()
self.download_data()
path_data = "./en_examples_with_stats.json"
lang = "English"
num_docs = 15000
num_docs_for_words = 1500
max_len_text_display = 10000
visualization = Visualization(
path_data, lang, num_docs, num_docs_for_words, max_len_text_display
)
visualization.visualization()
|