Spaces:
Running
Running
hyperbolic
Browse files- df/PaperCentral.py +1 -1
- paper_chat_tab.py +215 -116
df/PaperCentral.py
CHANGED
@@ -483,7 +483,7 @@ class PaperCentral:
|
|
483 |
neurips_id = re.search(r'id=([^&]+)', row["proceedings"])
|
484 |
if neurips_id:
|
485 |
neurips_id = neurips_id.group(1)
|
486 |
-
return f'<a href="/?tab=tab-chat-with-paper&paper_id={neurips_id}" id="custom_button" target="
|
487 |
else:
|
488 |
return ""
|
489 |
|
|
|
483 |
neurips_id = re.search(r'id=([^&]+)', row["proceedings"])
|
484 |
if neurips_id:
|
485 |
neurips_id = neurips_id.group(1)
|
486 |
+
return f'<a href="/?tab=tab-chat-with-paper&paper_id={neurips_id}" id="custom_button" target="_self">✨ Chat with paper</a>'
|
487 |
else:
|
488 |
return ""
|
489 |
|
paper_chat_tab.py
CHANGED
@@ -1,10 +1,12 @@
|
|
1 |
import gradio as gr
|
2 |
from PyPDF2 import PdfReader
|
3 |
from bs4 import BeautifulSoup
|
4 |
-
|
|
|
5 |
import requests
|
6 |
from io import BytesIO
|
7 |
from transformers import AutoTokenizer
|
|
|
8 |
|
9 |
import os
|
10 |
from openai import OpenAI
|
@@ -12,13 +14,41 @@ from openai import OpenAI
|
|
12 |
# Cache for tokenizers to avoid reloading
|
13 |
tokenizer_cache = {}
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
# Function to fetch paper information from OpenReview
|
17 |
def fetch_paper_info_neurips(paper_id):
|
18 |
url = f"https://openreview.net/forum?id={paper_id}"
|
19 |
response = requests.get(url)
|
20 |
if response.status_code != 200:
|
21 |
-
return None
|
22 |
|
23 |
html_content = response.content
|
24 |
soup = BeautifulSoup(html_content, 'html.parser')
|
@@ -44,7 +74,6 @@ def fetch_paper_info_neurips(paper_id):
|
|
44 |
abstract = 'Abstract not found'
|
45 |
|
46 |
# Construct preamble in Markdown
|
47 |
-
# preamble = f"**[{title}](https://openreview.net/forum?id={paper_id})**\n\n{author_list}\n\n**Abstract:**\n{abstract}"
|
48 |
preamble = f"**[{title}](https://openreview.net/forum?id={paper_id})**\n\n{author_list}\n\n"
|
49 |
|
50 |
return preamble
|
@@ -75,110 +104,33 @@ def fetch_paper_content(paper_id):
|
|
75 |
return None
|
76 |
|
77 |
|
78 |
-
def
|
79 |
-
|
80 |
-
with gr.Column():
|
81 |
-
# Textbox to display the paper title and authors
|
82 |
-
content = gr.Markdown(value="")
|
83 |
-
|
84 |
-
# Preamble message to hint the user
|
85 |
-
gr.Markdown("**Note:** Providing your own sambanova token can help you avoid rate limits.")
|
86 |
-
|
87 |
-
# Input for Hugging Face token
|
88 |
-
hf_token_input = gr.Textbox(
|
89 |
-
label="Enter your sambanova token (optional)",
|
90 |
-
type="password",
|
91 |
-
placeholder="Enter your sambanova token to avoid rate limits"
|
92 |
-
)
|
93 |
-
|
94 |
-
models = [
|
95 |
-
# "Meta-Llama-3.1-8B-Instruct",
|
96 |
-
"Meta-Llama-3.1-70B-Instruct",
|
97 |
-
# "Meta-Llama-3.1-405B-Instruct",
|
98 |
-
]
|
99 |
-
|
100 |
-
default_model = models[0]
|
101 |
-
|
102 |
-
# Dropdown for selecting the model
|
103 |
-
model_dropdown = gr.Dropdown(
|
104 |
-
label="Select Model",
|
105 |
-
choices=models,
|
106 |
-
value=default_model
|
107 |
-
)
|
108 |
-
|
109 |
-
# State to store the paper content
|
110 |
-
paper_content = gr.State()
|
111 |
-
|
112 |
-
# Create a column for each model, only visible if it's the default model
|
113 |
-
columns = []
|
114 |
-
for model_name in models:
|
115 |
-
column = gr.Column(visible=(model_name == default_model))
|
116 |
-
with column:
|
117 |
-
chatbot = create_chat_interface(model_name, paper_content, hf_token_input)
|
118 |
-
columns.append(column)
|
119 |
-
gr.HTML(
|
120 |
-
'<img src="https://venturebeat.com/wp-content/uploads/2020/02/SambaNovaLogo_H_F.jpg" width="100px" />')
|
121 |
-
gr.Markdown("**Note:** This model is supported by SambaNova.")
|
122 |
-
|
123 |
-
# Update visibility of columns based on the selected model
|
124 |
-
def update_columns(selected_model):
|
125 |
-
visibility = []
|
126 |
-
for model_name in models:
|
127 |
-
is_visible = model_name == selected_model
|
128 |
-
visibility.append(gr.update(visible=is_visible))
|
129 |
-
return visibility
|
130 |
-
|
131 |
-
model_dropdown.change(
|
132 |
-
fn=update_columns,
|
133 |
-
inputs=model_dropdown,
|
134 |
-
outputs=columns,
|
135 |
-
api_name=False,
|
136 |
-
queue=False,
|
137 |
-
)
|
138 |
-
|
139 |
-
# Function to update the content Markdown and paper_content when paper ID or model changes
|
140 |
-
def update_paper_info(paper_id, selected_model):
|
141 |
-
preamble = fetch_paper_info_neurips(paper_id)
|
142 |
-
text = fetch_paper_content(paper_id)
|
143 |
-
if text is None:
|
144 |
-
return preamble, None
|
145 |
-
|
146 |
-
return preamble, text
|
147 |
-
|
148 |
-
# Update paper content when paper ID or model changes
|
149 |
-
paper_id.change(
|
150 |
-
fn=update_paper_info,
|
151 |
-
inputs=[paper_id, model_dropdown],
|
152 |
-
outputs=[content, paper_content]
|
153 |
-
)
|
154 |
-
|
155 |
-
model_dropdown.change(
|
156 |
-
fn=update_paper_info,
|
157 |
-
inputs=[paper_id, model_dropdown],
|
158 |
-
outputs=[content, paper_content],
|
159 |
-
queue=False,
|
160 |
-
)
|
161 |
-
return demo
|
162 |
-
|
163 |
-
|
164 |
-
def create_chat_interface(model_name, paper_content, hf_token_input):
|
165 |
-
# Load tokenizer and cache it
|
166 |
-
if model_name not in tokenizer_cache:
|
167 |
-
# Load the tokenizer from Hugging Face
|
168 |
-
# tokenizer = AutoTokenizer.from_pretrained(model_name)
|
169 |
-
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-1B-Instruct",
|
170 |
-
token=os.environ.get("HF_TOKEN"))
|
171 |
-
tokenizer_cache[model_name] = tokenizer
|
172 |
-
else:
|
173 |
-
tokenizer = tokenizer_cache[model_name]
|
174 |
-
|
175 |
-
max_total_tokens = 50000 # Maximum tokens allowed
|
176 |
-
|
177 |
# Define the function to handle the chat
|
178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
# Include the paper content as context
|
180 |
if paper_content_value:
|
181 |
-
context = f"The
|
182 |
else:
|
183 |
context = ""
|
184 |
|
@@ -237,24 +189,25 @@ def create_chat_interface(model_name, paper_content, hf_token_input):
|
|
237 |
# Rebuild the final messages list including the (possibly truncated) context
|
238 |
final_messages = []
|
239 |
if context:
|
240 |
-
final_messages.append(
|
|
|
241 |
final_messages.extend(messages)
|
242 |
|
243 |
-
# Use the
|
244 |
-
api_key = hf_token_value or os.environ.get(
|
245 |
if not api_key:
|
246 |
raise ValueError("API token is not provided.")
|
247 |
|
248 |
-
# Initialize the OpenAI client
|
249 |
client = OpenAI(
|
250 |
-
base_url=
|
251 |
api_key=api_key,
|
252 |
)
|
253 |
|
254 |
try:
|
255 |
# Create the chat completion
|
256 |
completion = client.chat.completions.create(
|
257 |
-
model=
|
258 |
messages=final_messages,
|
259 |
stream=True,
|
260 |
)
|
@@ -263,9 +216,20 @@ def create_chat_interface(model_name, paper_content, hf_token_input):
|
|
263 |
delta = chunk.choices[0].delta.content or ""
|
264 |
response_text += delta
|
265 |
yield response_text
|
266 |
-
except
|
267 |
-
|
268 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
|
270 |
# Create the ChatInterface
|
271 |
chat_interface = gr.ChatInterface(
|
@@ -274,9 +238,144 @@ def create_chat_interface(model_name, paper_content, hf_token_input):
|
|
274 |
label="Chatbot",
|
275 |
scale=1,
|
276 |
height=400,
|
277 |
-
autoscroll=True
|
278 |
),
|
279 |
-
additional_inputs=[paper_content, hf_token_input],
|
280 |
-
|
281 |
)
|
282 |
return chat_interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from PyPDF2 import PdfReader
|
3 |
from bs4 import BeautifulSoup
|
4 |
+
import openai
|
5 |
+
import traceback
|
6 |
import requests
|
7 |
from io import BytesIO
|
8 |
from transformers import AutoTokenizer
|
9 |
+
import json
|
10 |
|
11 |
import os
|
12 |
from openai import OpenAI
|
|
|
14 |
# Cache for tokenizers to avoid reloading
|
15 |
tokenizer_cache = {}
|
16 |
|
17 |
+
# Global variables for providers
|
18 |
+
PROVIDERS = {
|
19 |
+
"Hyperbolic": {
|
20 |
+
"name": "hyperbolic",
|
21 |
+
"logo": "https://www.nftgators.com/wp-content/uploads/2024/07/Hyperbolic.jpg",
|
22 |
+
"endpoint": "https://api.hyperbolic.xyz/v1",
|
23 |
+
"api_key_env_var": "HYPERBOLIC_API_KEY",
|
24 |
+
"models": [
|
25 |
+
"meta-llama/Meta-Llama-3.1-405B-Instruct",
|
26 |
+
],
|
27 |
+
"type": "tuples",
|
28 |
+
"max_total_tokens": "50000",
|
29 |
+
},
|
30 |
+
"SambaNova": {
|
31 |
+
"name": "SambaNova",
|
32 |
+
"logo": "https://venturebeat.com/wp-content/uploads/2020/02/SambaNovaLogo_H_F.jpg",
|
33 |
+
"endpoint": "https://api.sambanova.ai/v1/",
|
34 |
+
"api_key_env_var": "SAMBANOVA_API_KEY",
|
35 |
+
"models": [
|
36 |
+
"Meta-Llama-3.1-70B-Instruct",
|
37 |
+
# Add more models if needed
|
38 |
+
],
|
39 |
+
"type": "tuples",
|
40 |
+
"max_total_tokens": "50000",
|
41 |
+
},
|
42 |
+
|
43 |
+
}
|
44 |
+
|
45 |
|
46 |
# Function to fetch paper information from OpenReview
|
47 |
def fetch_paper_info_neurips(paper_id):
|
48 |
url = f"https://openreview.net/forum?id={paper_id}"
|
49 |
response = requests.get(url)
|
50 |
if response.status_code != 200:
|
51 |
+
return None
|
52 |
|
53 |
html_content = response.content
|
54 |
soup = BeautifulSoup(html_content, 'html.parser')
|
|
|
74 |
abstract = 'Abstract not found'
|
75 |
|
76 |
# Construct preamble in Markdown
|
|
|
77 |
preamble = f"**[{title}](https://openreview.net/forum?id={paper_id})**\n\n{author_list}\n\n"
|
78 |
|
79 |
return preamble
|
|
|
104 |
return None
|
105 |
|
106 |
|
107 |
+
def create_chat_interface(provider_dropdown, model_dropdown, paper_content, hf_token_input, default_type,
|
108 |
+
provider_max_total_tokens):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
# Define the function to handle the chat
|
110 |
+
print("the type is", default_type.value)
|
111 |
+
|
112 |
+
def get_fn(message, history, paper_content_value, hf_token_value, provider_name_value, model_name_value,
|
113 |
+
max_total_tokens):
|
114 |
+
provider_info = PROVIDERS[provider_name_value]
|
115 |
+
endpoint = provider_info['endpoint']
|
116 |
+
api_key_env_var = provider_info['api_key_env_var']
|
117 |
+
models = provider_info['models']
|
118 |
+
max_total_tokens = int(max_total_tokens)
|
119 |
+
|
120 |
+
# Load tokenizer and cache it
|
121 |
+
tokenizer_key = f"{provider_name_value}_{model_name_value}"
|
122 |
+
if tokenizer_key not in tokenizer_cache:
|
123 |
+
# Load the tokenizer; adjust the model path based on the provider and model
|
124 |
+
# This is a placeholder; you need to provide the correct tokenizer path
|
125 |
+
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-1B-Instruct",
|
126 |
+
token=os.environ.get("HF_TOKEN"))
|
127 |
+
tokenizer_cache[tokenizer_key] = tokenizer
|
128 |
+
else:
|
129 |
+
tokenizer = tokenizer_cache[tokenizer_key]
|
130 |
+
|
131 |
# Include the paper content as context
|
132 |
if paper_content_value:
|
133 |
+
context = f"The discussion is about the following paper:\n{paper_content_value}\n\n"
|
134 |
else:
|
135 |
context = ""
|
136 |
|
|
|
189 |
# Rebuild the final messages list including the (possibly truncated) context
|
190 |
final_messages = []
|
191 |
if context:
|
192 |
+
final_messages.append(
|
193 |
+
{"role": "system", "content": f"{context}"})
|
194 |
final_messages.extend(messages)
|
195 |
|
196 |
+
# Use the provider's API key
|
197 |
+
api_key = hf_token_value or os.environ.get(api_key_env_var)
|
198 |
if not api_key:
|
199 |
raise ValueError("API token is not provided.")
|
200 |
|
201 |
+
# Initialize the OpenAI client with the provider's endpoint
|
202 |
client = OpenAI(
|
203 |
+
base_url=endpoint,
|
204 |
api_key=api_key,
|
205 |
)
|
206 |
|
207 |
try:
|
208 |
# Create the chat completion
|
209 |
completion = client.chat.completions.create(
|
210 |
+
model=model_name_value,
|
211 |
messages=final_messages,
|
212 |
stream=True,
|
213 |
)
|
|
|
216 |
delta = chunk.choices[0].delta.content or ""
|
217 |
response_text += delta
|
218 |
yield response_text
|
219 |
+
except json.JSONDecodeError as e:
|
220 |
+
print("Failed to decode JSON during the completion creation process.")
|
221 |
+
print(f"Error Message: {e.msg}")
|
222 |
+
print(f"Error Position: Line {e.lineno}, Column {e.colno} (Character {e.pos})")
|
223 |
+
print(f"Problematic JSON Data: {e.doc}")
|
224 |
+
yield f"{e.doc}"
|
225 |
+
except openai.OpenAIError as openai_err:
|
226 |
+
# Handle other OpenAI-related errors
|
227 |
+
print(f"An OpenAI error occurred: {openai_err}")
|
228 |
+
yield f"{openai_err}"
|
229 |
+
except Exception as ex:
|
230 |
+
# Handle any other exceptions
|
231 |
+
print(f"An unexpected error occurred: {ex}")
|
232 |
+
yield f"{ex}"
|
233 |
|
234 |
# Create the ChatInterface
|
235 |
chat_interface = gr.ChatInterface(
|
|
|
238 |
label="Chatbot",
|
239 |
scale=1,
|
240 |
height=400,
|
241 |
+
autoscroll=True,
|
242 |
),
|
243 |
+
additional_inputs=[paper_content, hf_token_input, provider_dropdown, model_dropdown, provider_max_total_tokens],
|
244 |
+
type="tuples",
|
245 |
)
|
246 |
return chat_interface
|
247 |
+
|
248 |
+
|
249 |
+
def paper_chat_tab(paper_id):
|
250 |
+
with gr.Column():
|
251 |
+
# Textbox to display the paper title and authors
|
252 |
+
content = gr.Markdown(value="")
|
253 |
+
|
254 |
+
# Preamble message to hint the user
|
255 |
+
gr.Markdown("**Note:** Providing your own API token can help you avoid rate limits.")
|
256 |
+
|
257 |
+
# Input for API token
|
258 |
+
provider_names = list(PROVIDERS.keys())
|
259 |
+
default_provider = provider_names[0]
|
260 |
+
|
261 |
+
default_type = gr.State(value=PROVIDERS[default_provider]["type"])
|
262 |
+
default_max_total_tokens = gr.State(value=PROVIDERS[default_provider]["max_total_tokens"])
|
263 |
+
|
264 |
+
provider_dropdown = gr.Dropdown(
|
265 |
+
label="Select Provider",
|
266 |
+
choices=provider_names,
|
267 |
+
value=default_provider
|
268 |
+
)
|
269 |
+
|
270 |
+
hf_token_input = gr.Textbox(
|
271 |
+
label=f"Enter your {default_provider} API token (optional)",
|
272 |
+
type="password",
|
273 |
+
placeholder=f"Enter your {default_provider} API token to avoid rate limits"
|
274 |
+
)
|
275 |
+
|
276 |
+
# Dropdown for selecting the model
|
277 |
+
model_dropdown = gr.Dropdown(
|
278 |
+
label="Select Model",
|
279 |
+
choices=PROVIDERS[default_provider]['models'],
|
280 |
+
value=PROVIDERS[default_provider]['models'][0]
|
281 |
+
)
|
282 |
+
|
283 |
+
# Placeholder for the provider logo
|
284 |
+
logo_html = gr.HTML(
|
285 |
+
value=f'<img src="{PROVIDERS[default_provider]["logo"]}" width="100px" />'
|
286 |
+
)
|
287 |
+
|
288 |
+
# Note about the provider
|
289 |
+
note_markdown = gr.Markdown(f"**Note:** This model is supported by {default_provider}.")
|
290 |
+
|
291 |
+
# State to store the paper content
|
292 |
+
paper_content = gr.State()
|
293 |
+
|
294 |
+
# Function to update models and logo when provider changes
|
295 |
+
def update_provider(selected_provider):
|
296 |
+
provider_info = PROVIDERS[selected_provider]
|
297 |
+
models = provider_info['models']
|
298 |
+
logo_url = provider_info['logo']
|
299 |
+
chatbot_message_type = provider_info['type']
|
300 |
+
max_total_tokens = provider_info['max_total_tokens']
|
301 |
+
|
302 |
+
# Update the models dropdown
|
303 |
+
model_dropdown_choices = gr.update(choices=models, value=models[0])
|
304 |
+
|
305 |
+
# Update the logo image
|
306 |
+
logo_html_content = f'<img src="{logo_url}" width="100px" />'
|
307 |
+
logo_html_update = gr.update(value=logo_html_content)
|
308 |
+
|
309 |
+
# Update the note markdown
|
310 |
+
note_markdown_update = gr.update(value=f"**Note:** This model is supported by {selected_provider}.")
|
311 |
+
|
312 |
+
# Update the hf_token_input label and placeholder
|
313 |
+
hf_token_input_update = gr.update(
|
314 |
+
label=f"Enter your {selected_provider} API token (optional)",
|
315 |
+
placeholder=f"Enter your {selected_provider} API token to avoid rate limits"
|
316 |
+
)
|
317 |
+
|
318 |
+
return model_dropdown_choices, logo_html_update, note_markdown_update, hf_token_input_update, chatbot_message_type, max_total_tokens
|
319 |
+
|
320 |
+
provider_dropdown.change(
|
321 |
+
fn=update_provider,
|
322 |
+
inputs=provider_dropdown,
|
323 |
+
outputs=[model_dropdown, logo_html, note_markdown, hf_token_input, default_type, default_max_total_tokens],
|
324 |
+
queue=False
|
325 |
+
)
|
326 |
+
|
327 |
+
# Function to update the paper info
|
328 |
+
def update_paper_info(paper_id_value, selected_model):
|
329 |
+
preamble = fetch_paper_info_neurips(paper_id_value)
|
330 |
+
text = fetch_paper_content(paper_id_value)
|
331 |
+
if preamble is None:
|
332 |
+
preamble = "Paper not found or could not retrieve paper information."
|
333 |
+
if text is None:
|
334 |
+
return preamble, None
|
335 |
+
return preamble, text
|
336 |
+
|
337 |
+
# Update paper content when paper ID or model changes
|
338 |
+
paper_id.change(
|
339 |
+
fn=update_paper_info,
|
340 |
+
inputs=[paper_id, model_dropdown],
|
341 |
+
outputs=[content, paper_content]
|
342 |
+
)
|
343 |
+
|
344 |
+
model_dropdown.change(
|
345 |
+
fn=update_paper_info,
|
346 |
+
inputs=[paper_id, model_dropdown],
|
347 |
+
outputs=[content, paper_content],
|
348 |
+
queue=False,
|
349 |
+
)
|
350 |
+
|
351 |
+
# Create the chat interface
|
352 |
+
chat_interface = create_chat_interface(provider_dropdown, model_dropdown, paper_content, hf_token_input,
|
353 |
+
default_type, default_max_total_tokens)
|
354 |
+
|
355 |
+
|
356 |
+
def main():
|
357 |
+
"""
|
358 |
+
Launches the Gradio app.
|
359 |
+
"""
|
360 |
+
with gr.Blocks(css_paths="style.css") as demo:
|
361 |
+
x = gr.State(value="") # Initialize with an empty state
|
362 |
+
|
363 |
+
def update_state():
|
364 |
+
"""
|
365 |
+
Function to update the state.
|
366 |
+
"""
|
367 |
+
return "5G7ve8E1Lu"
|
368 |
+
|
369 |
+
with gr.Row():
|
370 |
+
update_button = gr.Button("Update State") # Button to update the state
|
371 |
+
|
372 |
+
# Update the state and reflect the change in the display
|
373 |
+
update_button.click(update_state, inputs=[], outputs=[x])
|
374 |
+
paper_chat_tab(x)
|
375 |
+
|
376 |
+
demo.launch(ssr_mode=False)
|
377 |
+
|
378 |
+
|
379 |
+
# Run the main function when the script is executed
|
380 |
+
if __name__ == "__main__":
|
381 |
+
main()
|