import { env } from "$env/dynamic/private"; import type { Model, ModelWithTokenizer } from "$lib/types"; import { json } from "@sveltejs/kit"; import type { RequestHandler } from "./$types"; import { dev } from "$app/environment"; let cache: ModelWithTokenizer[] | undefined; export const GET: RequestHandler = async ({ fetch }) => { if (cache && dev) { console.log("Skipping load, using in memory cache"); return json(cache); } const apiUrl = "https://huggingface.co/api/models?pipeline_tag=text-generation&filter=conversational&inference_provider=all&limit=100&expand[]=inferenceProviderMapping&expand[]=config&expand[]=library_name&expand[]=pipeline_tag&expand[]=tags&expand[]=mask_token&expand[]=trendingScore"; const HF_TOKEN = env.HF_TOKEN; const res = await fetch(apiUrl, { headers: { Authorization: `Bearer ${HF_TOKEN}`, }, }); if (!res.ok) { console.error(`Error fetching warm models`, res.status, res.statusText); return json({ models: [] }); } const compatibleModels: Model[] = await res.json(); compatibleModels.sort((a, b) => a.id.toLowerCase().localeCompare(b.id.toLowerCase())); const promises = compatibleModels.map(async model => { const configUrl = `https://huggingface.co/${model.id}/raw/main/tokenizer_config.json`; const res = await fetch(configUrl, { headers: { Authorization: `Bearer ${HF_TOKEN}`, }, }); if (!res.ok) { console.error(`Error fetching tokenizer file for ${model.id}`, res.status, res.statusText); return null; // Ignore failed requests by returning null } const tokenizerConfig = await res.json(); return { ...model, tokenizerConfig } satisfies ModelWithTokenizer; }); const models: ModelWithTokenizer[] = (await Promise.all(promises)).filter(model => model !== null); cache = models; return json(cache); };