File size: 5,631 Bytes
59812f5
141ba59
c86c2f3
 
 
d2d3f64
c86c2f3
141ba59
c86c2f3
07794a3
 
 
 
 
 
 
 
4522cd0
 
59812f5
4522cd0
141ba59
07794a3
4522cd0
07794a3
 
4522cd0
 
 
79fb823
4522cd0
 
e6dd388
 
 
 
 
d966909
e6dd388
 
c86c2f3
09b3f75
c86c2f3
141ba59
07794a3
 
 
 
 
 
141ba59
c86c2f3
07794a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c86c2f3
d2d3f64
4522cd0
c86c2f3
141ba59
c86c2f3
141ba59
 
 
 
 
 
 
 
 
 
 
 
 
54995d2
 
 
6bc8e25
54995d2
141ba59
 
 
54995d2
141ba59
 
 
 
 
 
 
 
 
 
 
c86c2f3
141ba59
 
 
 
c86c2f3
07794a3
 
 
c86c2f3
07794a3
 
 
 
 
 
141ba59
1827259
07794a3
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import os
from threading import Thread
from typing import Iterator

import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer

from llama_index.core.prompts.prompts import SimpleInputPrompt
from llama_index.llms.huggingface import HuggingFaceLLM
from llama_index.legacy.embeddings.langchain import LangchainEmbedding
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from llama_index.core import set_global_service_context, ServiceContext, VectorStoreIndex, Document
from pathlib import Path
import fitz  # PyMuPDF

MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

DESCRIPTION = """\
# Llama-2 7B Chat with Document Context

This Space demonstrates model [Llama-2-7b-chat](https://huggingface.co/meta-llama/Llama-2-7b-chat) by Meta, a Llama 2 model with 7B parameters fine-tuned for chat instructions, now enhanced with document-based context. 
Feel free to play with it, or duplicate to run generations without a queue! If you want to run your own service, you can also [deploy the model on Inference Endpoints](https://huggingface.co/inference-endpoints).

πŸ”Ž For more details about the Llama 2 family of models and how to use them with `transformers`, take a look [at our blog post](https://huggingface.co/blog/llama2).

πŸ”¨ Looking for an even more powerful model? Check out the [13B version](https://huggingface.co/spaces/huggingface-projects/llama-2-13b-chat) or the large [70B model demo](https://huggingface.co/spaces/ysharma/Explore_llamav2_with_TGI).
"""

LICENSE = """
<p/>

---
As a derivate work of [Llama-2-7b-chat](https://huggingface.co/meta-llama/Llama-2-7b-chat) by Meta,
this demo is governed by the original [license](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/USE_POLICY.md).
"""

if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU πŸ₯Ά This demo does not work on CPU.</p>"

if torch.cuda.is_available():
    model_name = "meta-llama/Llama-2-7b-chat-hf"
    token_file = open("HF_TOKEN.txt")
    auth_token = token_file.readline().strip()

    model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto", token=auth_token)
    tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir='./model/', token=auth_token)
    tokenizer.use_default_system_prompt = False

    # Load documents and create the index
    def read_pdf_to_documents(file_path):
        doc = fitz.open(file_path)
        documents = []
        for page_num in range(len(doc)):
            page = doc.load_page(page_num)
            text = page.get_text()
            documents.append(Document(text=text))
        return documents

    file_path = Path('/content/Full_Pamplet.pdf')  # Update with your document path
    documents = read_pdf_to_documents(file_path)
    embeddings = LangchainEmbedding(HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2"))
    service_context = ServiceContext.from_defaults(chunk_size=1024, embed_model=embeddings)
    set_global_service_context(service_context)
    index = VectorStoreIndex.from_documents(documents)
    query_engine = index.as_query_engine()

@spaces.GPU
def generate(
    message: str,
    chat_history: list[tuple[str, str]],
    system_prompt: str,
    max_new_tokens: int = 1024,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
) -> Iterator[str]:
    conversation = []
    if system_prompt:
        conversation.append({"role": "system", "content": system_prompt})
    for user, assistant in chat_history:
        conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        num_beams=1,
        repetition_penalty=repetition_penalty,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)

def query_model(question):
    response = query_engine.query(question)
    return response.response

update_prompt_interface = gr.Interface(
    fn=update_system_prompt,
    inputs=gr.Textbox(lines=5, placeholder="Enter the system prompt here...", label="System Prompt", value=system_prompt),
    outputs=gr.Textbox(label="Status"),
    title="System Prompt Updater",
    description="Update the system prompt used for context."
)

query_interface = gr.Interface(
    fn=query_model,
    inputs=gr.Textbox(lines=2, placeholder="Enter your question here...", label="User Question"),
    outputs=gr.Textbox(label="Response"),
    title="Document Query Assistant",
    description="Ask questions based on the conte