Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,631 Bytes
59812f5 141ba59 c86c2f3 d2d3f64 c86c2f3 141ba59 c86c2f3 07794a3 4522cd0 59812f5 4522cd0 141ba59 07794a3 4522cd0 07794a3 4522cd0 79fb823 4522cd0 e6dd388 d966909 e6dd388 c86c2f3 09b3f75 c86c2f3 141ba59 07794a3 141ba59 c86c2f3 07794a3 c86c2f3 d2d3f64 4522cd0 c86c2f3 141ba59 c86c2f3 141ba59 54995d2 6bc8e25 54995d2 141ba59 54995d2 141ba59 c86c2f3 141ba59 c86c2f3 07794a3 c86c2f3 07794a3 141ba59 1827259 07794a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from llama_index.core.prompts.prompts import SimpleInputPrompt
from llama_index.llms.huggingface import HuggingFaceLLM
from llama_index.legacy.embeddings.langchain import LangchainEmbedding
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from llama_index.core import set_global_service_context, ServiceContext, VectorStoreIndex, Document
from pathlib import Path
import fitz # PyMuPDF
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
DESCRIPTION = """\
# Llama-2 7B Chat with Document Context
This Space demonstrates model [Llama-2-7b-chat](https://huggingface.co/meta-llama/Llama-2-7b-chat) by Meta, a Llama 2 model with 7B parameters fine-tuned for chat instructions, now enhanced with document-based context.
Feel free to play with it, or duplicate to run generations without a queue! If you want to run your own service, you can also [deploy the model on Inference Endpoints](https://huggingface.co/inference-endpoints).
π For more details about the Llama 2 family of models and how to use them with `transformers`, take a look [at our blog post](https://huggingface.co/blog/llama2).
π¨ Looking for an even more powerful model? Check out the [13B version](https://huggingface.co/spaces/huggingface-projects/llama-2-13b-chat) or the large [70B model demo](https://huggingface.co/spaces/ysharma/Explore_llamav2_with_TGI).
"""
LICENSE = """
<p/>
---
As a derivate work of [Llama-2-7b-chat](https://huggingface.co/meta-llama/Llama-2-7b-chat) by Meta,
this demo is governed by the original [license](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/USE_POLICY.md).
"""
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU π₯Ά This demo does not work on CPU.</p>"
if torch.cuda.is_available():
model_name = "meta-llama/Llama-2-7b-chat-hf"
token_file = open("HF_TOKEN.txt")
auth_token = token_file.readline().strip()
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto", token=auth_token)
tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir='./model/', token=auth_token)
tokenizer.use_default_system_prompt = False
# Load documents and create the index
def read_pdf_to_documents(file_path):
doc = fitz.open(file_path)
documents = []
for page_num in range(len(doc)):
page = doc.load_page(page_num)
text = page.get_text()
documents.append(Document(text=text))
return documents
file_path = Path('/content/Full_Pamplet.pdf') # Update with your document path
documents = read_pdf_to_documents(file_path)
embeddings = LangchainEmbedding(HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2"))
service_context = ServiceContext.from_defaults(chunk_size=1024, embed_model=embeddings)
set_global_service_context(service_context)
index = VectorStoreIndex.from_documents(documents)
query_engine = index.as_query_engine()
@spaces.GPU
def generate(
message: str,
chat_history: list[tuple[str, str]],
system_prompt: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
conversation = []
if system_prompt:
conversation.append({"role": "system", "content": system_prompt})
for user, assistant in chat_history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
def query_model(question):
response = query_engine.query(question)
return response.response
update_prompt_interface = gr.Interface(
fn=update_system_prompt,
inputs=gr.Textbox(lines=5, placeholder="Enter the system prompt here...", label="System Prompt", value=system_prompt),
outputs=gr.Textbox(label="Status"),
title="System Prompt Updater",
description="Update the system prompt used for context."
)
query_interface = gr.Interface(
fn=query_model,
inputs=gr.Textbox(lines=2, placeholder="Enter your question here...", label="User Question"),
outputs=gr.Textbox(label="Response"),
title="Document Query Assistant",
description="Ask questions based on the conte
|