Spaces:
Runtime error
Runtime error
import logging | |
import os | |
from typing import List, Optional, Tuple | |
from dotenv import load_dotenv | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
from langchain.chains import RetrievalQA | |
from langchain_core.documents import Document | |
import google.generativeai as genai | |
from .document_processor import DocumentProcessor | |
from .embedding_manager import EmbeddingManager | |
from .vector_store import VectorStoreManager | |
load_dotenv() | |
logger = logging.getLogger(__name__) | |
# Load API key from .env file | |
google_api_key = os.environ.get("GOOGLE_API_KEY") | |
if not google_api_key: | |
raise ValueError("GOOGLE_API_KEY not found in .env file") | |
class RAGPipeline: | |
def __init__(self, api_key: Optional[str] = None, chunk_size: int = 1000, chunk_overlap: int = 200, embedding_model: str = "sentence-transformers/all-MiniLM-L6-v2", persist_directory: str = "./chroma_db", temperature: float = 0.3): | |
self.api_key = api_key | |
self.chunk_size = chunk_size | |
self.chunk_overlap = chunk_overlap | |
self.embedding_model = embedding_model | |
self.persist_directory = persist_directory | |
self.temperature = temperature | |
self.document_processor = None | |
self.embedding_manager = None | |
self.llm = None | |
self.qa_chain = None | |
self._initialize_components() | |
def _initialize_components(self): | |
try: | |
logger.info("Initializing RAG Pipeline components") | |
genai.configure(api_key=google_api_key) | |
self.document_processor = DocumentProcessor(chunk_size=self.chunk_size, chunk_overlap=self.chunk_overlap) | |
self.embedding_manager = EmbeddingManager(model_name=self.embedding_model) | |
self.vector_store_manager = VectorStoreManager(persist_directory=self.persist_directory, embedding_function=self.embedding_manager.get_embeddings()) | |
self.vector_store_manager.initialize_vector_store() | |
self.llm = ChatGoogleGenerativeAI(model="gemini-1.5-flash", temperature=self.temperature) | |
logger.info("RAG Pipeline components initialized successfully") | |
except Exception as e: | |
logger.error(f"Error initializing RAG Pipeline components: {e}") | |
raise e | |
def process_document(self, file_path: str) -> bool: | |
try: | |
logger.info(f"Processing document: {file_path}") | |
# Chunk document | |
chunks = self.document_processor.process_document(file_path) | |
if not chunks: | |
logger.error("No chunks generated from document") | |
return False | |
# Add chunks to vector store | |
success = self.vector_store_manager.add_documents(chunks) | |
if not success: | |
logger.error("Failed to add chunks to vector store") | |
return False | |
# Initialize QA chain | |
retriever = self.vector_store_manager.get_retriever() | |
self.qa_chain = RetrievalQA.from_chain_type( | |
llm=self.llm, | |
chain_type="stuff", | |
retriever=retriever, | |
return_source_documents=True | |
) | |
logger.info(f"Document processed successfully") | |
return True | |
except Exception as e: | |
logger.error(f"Error processing document: {e}") | |
return False | |
def query(self, question: str) -> Tuple[str, List[Document]]: | |
try: | |
if not self.qa_chain: | |
return "Please process a document first before asking questions.", [] | |
logger.info(f"Processing query: '{question}'") | |
response = self.qa_chain({"query": question}) | |
answer = response['result'] | |
source_docs = response.get("source_documents", []) | |
logger.info(f"Query completed successfully. Answer length: {len(answer)}") | |
return answer, source_docs | |
except Exception as e: | |
logger.error(f"Error processing query: {e}") | |
return f"Error processing query: {str(e)}", [] | |
def get_system_info(self) -> dict: | |
try: | |
info = { | |
'chunk_size': self.chunk_size, | |
'chunk_overlap': self.chunk_overlap, | |
'embedding_model': self.embedding_model, | |
'persist_directory': self.persist_directory, | |
'temperature': self.temperature, | |
'components_initialized': { | |
'document_processor': self.document_processor is not None, | |
'embedding_manager': self.embedding_manager is not None, | |
'vector_store_manager': self.vector_store_manager is not None, | |
'llm': self.llm is not None, | |
'qa_chain': self.qa_chain is not None | |
} | |
} | |
# Add embedding model info | |
if self.embedding_manager: | |
info['embedding_info'] = self.embedding_manager.get_model_info() | |
# Add vector store stats | |
if self.vector_store_manager: | |
info['vector_store_stats'] = self.vector_store_manager.get_collection_stats() | |
return info | |
except Exception as e: | |
logger.error(f"Error getting system info: {e}") | |
return {} | |
def clear_knowledge_base(self) -> bool: | |
try: | |
logger.info("Clearing knowledge base") | |
# Clear vector store | |
if self.vector_store_manager: | |
self.vector_store_manager.clear_vector_store() | |
# Reset QA chain | |
self.qa_chain = None | |
logger.info("Knowledge base cleared successfully") | |
return True | |
except Exception as e: | |
logger.error(f"Error clearing knowledge base: {e}") | |
return False | |
def is_ready(self) -> bool: | |
return ( | |
self.document_processor is not None and | |
self.embedding_manager is not None and | |
self.vector_store_manager is not None and | |
self.llm is not None and | |
self.qa_chain is not None | |
) | |