File size: 5,329 Bytes
816825a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import logging
import os
from typing import List, Optional, Tuple
from langchain_chroma import Chroma
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings

logger = logging.getLogger(__name__)

class VectorStoreManager:
    def __init__(self, persist_directory: str = "./chroma_db", embedding_function: Optional[Embeddings] = None):
        self.persist_directory = persist_directory
        self.embedding_function = embedding_function
        self.vector_store = None
        self._ensure_persist_directory()

    def _ensure_persist_directory(self):
        try:
            os.makedirs(self.persist_directory, exist_ok=True)
            logger.info(f"Persist directory ensured: {self.persist_directory}")
        except Exception as e:
            logger.error(f"Error creating persist directory: {e}")
            raise e
        
    def initialize_vector_store(self, embedding_function: Optional[Embeddings] = None):
        if embedding_function:
            self.embedding_function = embedding_function
        
        if not self.embedding_function:
            raise ValueError("Embedding function must be provided")
        
        try:
            logger.info("Initializing vector store")
            self.vector_store = Chroma(
                persist_directory=self.persist_directory,
                embedding_function=self.embedding_function
            )
            logger.info("Vector store initialized successfully")
            
        except Exception as e:
            logger.error(f"Error initializing vector store: {e}")
            raise e
        
    def add_documents(self, documents: List[Document]) -> bool:
        try:
            if not self.vector_store:
                raise ValueError("Vector store not initialized")
            
            logger.info(f"Adding {len(documents)} document(s) to vector store")
            self.vector_store.add_documents(documents)
            logger.info("Documents added successfully")
            return True
            
        except Exception as e:
            logger.error(f"Error adding documents to vector store: {e}")
            return False
        
    def similarity_search(self, query: str, k: int = 5) -> List[Document]:
        try:
            if not self.vector_store:
                raise ValueError("Vector store not initialized")
            
            logger.info(f"Performing similarity search for query: '{query[:50]}...'")
            results = self.vector_store.similarity_search(query, k=k)
            logger.info(f"Found {len(results)} similar documents")
            return results
            
        except Exception as e:
            logger.error(f"Error performing similarity search: {e}")
            return []
        
    def similarity_search_with_score(self, query: str, k: int = 5) -> List[Tuple[Document, float]]:
        try:
            if not self.vector_store:
                raise ValueError("Vector store not initialized")
            
            logger.info(f"Performing similarity search with scores for query: '{query[:50]}...'")
            results = self.vector_store.similarity_search_with_score(query, k=k)
            logger.info(f"Found {len(results)} similar documents with scores")
            return results
            
        except Exception as e:
            logger.error(f"Error performing similarity search with scores: {e}")
            return []
        
    def get_retriever(self, search_kwargs: Optional[dict] = None):
        try:
            if not self.vector_store:
                raise ValueError("Vector store not initialized")
            
            default_kwargs = {"k": 5}
            if search_kwargs:
                default_kwargs.update(search_kwargs)
            
            retriever = self.vector_store.as_retriever(search_kwargs=default_kwargs)
            logger.info("Retriever created successfully")
            return retriever
            
        except Exception as e:
            logger.error(f"Error creating retriever: {e}")
            raise e
        
    def get_collection_stats(self) -> dict:
        try:
            if not self.vector_store:
                return {'total_documents': 0, 'collection_name': None}
            
            collection = self.vector_store._collection
            count = collection.count()
            
            return {
                'total_documents': count,
                'collection_name': collection.name,
                'persist_directory': self.persist_directory
            }
        
        except Exception as e:
            logger.error(f"Error getting collection stats: {e}")
            return {'total_documents': 0, 'collection_name': None}
        
    def clear_vector_store(self) -> bool:
        try:
            if not self.vector_store:
                return True
            
            logger.info("Clearing vector store")
            self.vector_store._collection.delete(where={})
            logger.info("Vector store cleared successfully")
            return True
            
        except Exception as e:
            logger.error(f"Error clearing vector store: {e}")
            return False
        
    def is_initialized(self) -> bool:
        return self.vector_store is not None