Spaces:
Runtime error
Runtime error
File size: 9,963 Bytes
816825a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
import streamlit as st
import os
import tempfile
import logging
from dotenv import load_dotenv
import uuid
# UI Components moved to src/ui_components.py for easier debugging and maintenance
from src.ui_components import (
setup_page_config, load_custom_css, render_header,
render_getting_started, render_system_info,
render_processing_spinner
)
from src.rag_pipeline import RAGPipeline
load_dotenv()
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def initialize_session_state():
if 'session_id' not in st.session_state:
st.session_state.session_id = str(uuid.uuid4())
if 'rag_pipeline' not in st.session_state:
st.session_state.rag_pipeline = None
if 'messages' not in st.session_state:
st.session_state.messages = []
if 'rag_sources' not in st.session_state:
st.session_state.rag_sources = []
if 'document_loaded' not in st.session_state:
st.session_state.document_loaded = False
if 'document_stats' not in st.session_state:
st.session_state.document_stats = None
def process_uploaded_document(uploaded_file):
try:
st.info(f"Starting to process: {uploaded_file.name}")
# Save uploaded file temporarily
with tempfile.NamedTemporaryFile(delete=False, suffix='.txt', mode='w', encoding='utf-8') as tmp_file:
content = uploaded_file.getvalue().decode('utf-8')
tmp_file.write(content)
tmp_file_path = tmp_file.name
st.info(f"File saved temporarily at: {tmp_file_path}")
st.info(f"File content length: {len(content)} characters")
# Initialize RAG pipeline if not already done
if st.session_state.rag_pipeline is None:
st.info("Initializing RAG pipeline...")
st.session_state.rag_pipeline = RAGPipeline()
# Process document
st.info("Processing document through RAG pipeline...")
success = st.session_state.rag_pipeline.process_document(tmp_file_path)
if success:
st.info("Document processed successfully, getting statistics...")
# Get document statistics
chunks = st.session_state.rag_pipeline.document_processor.process_document(tmp_file_path)
stats = st.session_state.rag_pipeline.document_processor.get_document_stats(chunks)
# Update session state
st.session_state.document_loaded = True
st.session_state.document_stats = stats
st.info(f"Document processed successfully: {stats['total_chunks']} chunks")
else:
st.error("Failed to process document")
# Clean up temporary file
os.unlink(tmp_file_path)
return success
except Exception as e:
st.error(f"Error processing uploaded document: {e}")
logger.error(f"Error processing uploaded document: {e}")
return False
def handle_user_query(user_question):
try:
if not st.session_state.rag_pipeline or not st.session_state.document_loaded:
return "Please upload a document first before asking questions.", []
# Add user question to messages
st.session_state.messages.append({"role": "user", "content": user_question})
# Get response from RAG pipeline
with render_processing_spinner("Thinking..."):
answer, source_docs = st.session_state.rag_pipeline.query(user_question)
# Add assistant response to messages
st.session_state.messages.append({
"role": "assistant",
"content": answer,
"sources": source_docs
})
logger.info(f"Query processed: '{user_question[:50]}...'")
return answer, source_docs
except Exception as e:
logger.error(f"Error handling user query: {e}")
error_message = f"Error processing query: {str(e)}"
st.session_state.messages.append({"role": "assistant", "content": error_message, "sources": []})
return error_message, []
def clear_all_documents():
st.session_state.rag_sources = []
st.session_state.document_loaded = False
st.session_state.document_stats = None
st.session_state.rag_pipeline = None
st.session_state.uploaded_files = []
# Clear the vector store as well
if st.session_state.rag_pipeline and st.session_state.rag_pipeline.vector_store_manager:
st.session_state.rag_pipeline.vector_store_manager.clear_vector_store()
# Increment uploader key to reset file uploader
if 'uploader_key' not in st.session_state:
st.session_state.uploader_key = 0
st.session_state.uploader_key += 1
st.rerun()
def process_uploaded_files():
if 'uploaded_files' in st.session_state and st.session_state.uploaded_files:
for uploaded_file in st.session_state.uploaded_files:
if uploaded_file.name not in st.session_state.rag_sources:
# Simple test - just read the file content first
try:
content = uploaded_file.getvalue().decode('utf-8')
st.success(f"β
{uploaded_file.name} uploaded successfully! Content length: {len(content)} characters")
st.session_state.rag_sources.append(uploaded_file.name)
# Set document_loaded to True when we have files
st.session_state.document_loaded = True
# Now try to process with RAG pipeline
with st.spinner(f"Processing {uploaded_file.name} with RAG..."):
success = process_uploaded_document(uploaded_file)
if success:
st.success(f"β
{uploaded_file.name} RAG processing completed!")
else:
st.error(f"β RAG processing failed for {uploaded_file.name}")
except Exception as e:
st.error(f"β Error reading {uploaded_file.name}: {e}")
# Clear the uploaded files from session state to prevent reprocessing
st.session_state.uploaded_files = []
def main():
# Setup page configuration and styling
setup_page_config()
load_custom_css()
# Initialize session state
initialize_session_state()
# Render main header
render_header()
# Add getting started section
if not st.session_state.document_loaded:
render_getting_started()
# Clear buttons
col1, col2 = st.columns(2)
with col1:
if st.button("Clear Chat", type="primary"):
st.session_state.messages.clear()
st.rerun()
with col2:
if st.button("Clear All Documents", type="secondary"):
clear_all_documents()
# Initialize uploader key
if 'uploader_key' not in st.session_state:
st.session_state.uploader_key = 0
# File upload input
uploaded_files = st.file_uploader(
"π Upload a text document (.txt only, max 200MB)",
type=["txt"],
accept_multiple_files=True,
key=f"rag_docs_{st.session_state.uploader_key}"
)
# Store uploaded files in session state and process them
if uploaded_files:
st.session_state.uploaded_files = uploaded_files
st.info(f"Files uploaded: {[f.name for f in uploaded_files]}")
process_uploaded_files()
# Show documents in DB with individual remove buttons
with st.expander(f"π Documents in DB ({len(st.session_state.rag_sources)})"):
if st.session_state.rag_sources:
for i, doc in enumerate(st.session_state.rag_sources):
col1, col2 = st.columns([3, 1])
with col1:
st.write(f"β’ {doc}")
with col2:
if st.button("ποΈ", key=f"remove_doc_{i}_{doc}"):
# Remove the document
st.session_state.rag_sources.pop(i)
# Reset document_loaded if no documents left
if len(st.session_state.rag_sources) == 0:
st.session_state.document_loaded = False
st.session_state.document_stats = None
st.session_state.rag_pipeline = None
st.rerun()
else:
st.write("No documents in database")
# Display chat history
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Chat input
if prompt := st.chat_input("Your message"):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
with st.chat_message("assistant"):
message_placeholder = st.empty()
full_response = ""
# RAG response
answer, source_docs = handle_user_query(prompt)
st.write(answer)
# Show source documents if available
if source_docs and isinstance(source_docs, list) and len(source_docs) > 0:
with st.expander("π View Source Documents"):
for i, doc in enumerate(source_docs[:3]): # Show top 3 sources
st.markdown(f"**Source {i+1}:**")
st.markdown(f'{doc.page_content[:300]}{"..." if len(doc.page_content) > 300 else ""}')
st.divider()
# System information
if st.session_state.rag_pipeline:
system_info = st.session_state.rag_pipeline.get_system_info()
render_system_info(system_info)
if __name__ == "__main__":
main() |