Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
# -*- coding: utf-8 -*- | |
""" | |
๋ฒกํฐ ์คํ ์ด ๋ชจ๋: ๋ฌธ์ ์๋ฒ ๋ฉ ์์ฑ ๋ฐ ๋ฒกํฐ ์คํ ์ด ๊ตฌ์ถ | |
๋ฐฐ์น ์ฒ๋ฆฌ ์ ์ฉ + ์ฒญํฌ ๊ธธ์ด ํ์ธ ์ถ๊ฐ | |
""" | |
import os | |
import argparse | |
import logging | |
from tqdm import tqdm | |
from langchain_community.vectorstores import FAISS | |
from langchain.schema.document import Document | |
from langchain_huggingface import HuggingFaceEmbeddings | |
from e5_embeddings import E5Embeddings | |
# ๋ก๊น ์ค์ | |
logging.getLogger().setLevel(logging.ERROR) | |
def get_embeddings(model_name="intfloat/multilingual-e5-large-instruct", device="cuda"): | |
print(f"[INFO] ์๋ฒ ๋ฉ ๋ชจ๋ธ ๋๋ฐ์ด์ค: {device}") | |
return E5Embeddings( | |
model_name=model_name, | |
model_kwargs={'device': device}, | |
encode_kwargs={'normalize_embeddings': True} | |
) | |
def build_vector_store_batch(documents, embeddings, save_path="vector_db", batch_size=4): | |
if not documents: | |
raise ValueError("๋ฌธ์๊ฐ ์์ต๋๋ค. ๋ฌธ์๊ฐ ์ฌ๋ฐ๋ฅด๊ฒ ๋ก๋๋์๋์ง ํ์ธํ์ธ์.") | |
texts = [doc.page_content for doc in documents] | |
metadatas = [doc.metadata for doc in documents] | |
# ์ฒญํฌ ๊ธธ์ด ์ถ๋ ฅ | |
lengths = [len(t) for t in texts] | |
print(f"๐ก ์ฒญํฌ ์: {len(texts)}") | |
print(f"๐ก ๊ฐ์ฅ ๊ธด ์ฒญํฌ ๊ธธ์ด: {max(lengths)} chars") | |
print(f"๐ก ํ๊ท ์ฒญํฌ ๊ธธ์ด: {sum(lengths) // len(lengths)} chars") | |
# ๋ฐฐ์น๋ก ๋๋๊ธฐ | |
batches = [texts[i:i + batch_size] for i in range(0, len(texts), batch_size)] | |
metadata_batches = [metadatas[i:i + batch_size] for i in range(0, len(metadatas), batch_size)] | |
print(f"Processing {len(batches)} batches with size {batch_size}") | |
print(f"Initializing vector store with batch 1/{len(batches)}") | |
# โ from_documents ์ฌ์ฉ | |
first_docs = [ | |
Document(page_content=text, metadata=meta) | |
for text, meta in zip(batches[0], metadata_batches[0]) | |
] | |
vectorstore = FAISS.from_documents(first_docs, embeddings) | |
for i in tqdm(range(1, len(batches)), desc="Processing batches"): | |
try: | |
docs_batch = [ | |
Document(page_content=text, metadata=meta) | |
for text, meta in zip(batches[i], metadata_batches[i]) | |
] | |
vectorstore.add_documents(docs_batch) | |
if i % 10 == 0: | |
temp_save_path = f"{save_path}_temp" | |
os.makedirs(os.path.dirname(temp_save_path) if os.path.dirname(temp_save_path) else '.', exist_ok=True) | |
vectorstore.save_local(temp_save_path) | |
print(f"Temporary vector store saved to {temp_save_path} after batch {i}") | |
except Exception as e: | |
print(f"Error processing batch {i}: {e}") | |
error_save_path = f"{save_path}_error_at_batch_{i}" | |
os.makedirs(os.path.dirname(error_save_path) if os.path.dirname(error_save_path) else '.', exist_ok=True) | |
vectorstore.save_local(error_save_path) | |
print(f"Partial vector store saved to {error_save_path}") | |
raise | |
os.makedirs(os.path.dirname(save_path) if os.path.dirname(save_path) else '.', exist_ok=True) | |
vectorstore.save_local(save_path) | |
print(f"Vector store saved to {save_path}") | |
return vectorstore | |
def load_vector_store(embeddings, load_path="vector_db"): | |
if not os.path.exists(load_path): | |
raise FileNotFoundError(f"๋ฒกํฐ ์คํ ์ด๋ฅผ ์ฐพ์ ์ ์์ต๋๋ค: {load_path}") | |
return FAISS.load_local(load_path, embeddings, allow_dangerous_deserialization=True) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description="๋ฒกํฐ ์คํ ์ด ๊ตฌ์ถ") | |
parser.add_argument("--folder", type=str, default="final_dataset", help="๋ฌธ์๊ฐ ์๋ ํด๋ ๊ฒฝ๋ก") | |
parser.add_argument("--save_path", type=str, default="vector_db", help="๋ฒกํฐ ์คํ ์ด ์ ์ฅ ๊ฒฝ๋ก") | |
parser.add_argument("--batch_size", type=int, default=4, help="๋ฐฐ์น ํฌ๊ธฐ") | |
parser.add_argument("--model_name", type=str, default="intfloat/multilingual-e5-large-instruct", help="์๋ฒ ๋ฉ ๋ชจ๋ธ ์ด๋ฆ") | |
# parser.add_argument("--device", type=str, default="cuda", help="์ฌ์ฉํ ๋๋ฐ์ด์ค ('cuda' ๋๋ 'cpu')") | |
parser.add_argument("--device", type=str, default="cuda", help="์ฌ์ฉํ ๋๋ฐ์ด์ค ('cuda' ๋๋ 'cpu' ๋๋ 'cuda:1')") | |
args = parser.parse_args() | |
# ๋ฌธ์ ์ฒ๋ฆฌ ๋ชจ๋ import | |
from document_processor_image_test import load_documents, split_documents | |
documents = load_documents(args.folder) | |
chunks = split_documents(documents, chunk_size=800, chunk_overlap=100) | |
print(f"[DEBUG] ๋ฌธ์ ๋ก๋ฉ ๋ฐ ์ฒญํฌ ๋ถํ ์๋ฃ, ์๋ฒ ๋ฉ ๋จ๊ณ ์ง์ ์ ") | |
print(f"[INFO] ์ ํ๋ ๋๋ฐ์ด์ค: {args.device}") | |
try: | |
embeddings = get_embeddings( | |
model_name=args.model_name, | |
device=args.device | |
) | |
print(f"[DEBUG] ์๋ฒ ๋ฉ ๋ชจ๋ธ ์์ฑ ์๋ฃ") | |
except Exception as e: | |
print(f"[ERROR] ์๋ฒ ๋ฉ ๋ชจ๋ธ ์์ฑ ์ค ์๋ฌ ๋ฐ์: {e}") | |
import traceback; traceback.print_exc() | |
exit(1) | |
build_vector_store_batch(chunks, embeddings, args.save_path, args.batch_size) | |