Spaces:
Runtime error
Runtime error
File size: 16,888 Bytes
5f3b20a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 |
import os
import re
import glob
import time
from collections import defaultdict
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_core.documents import Document
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
# PyMuPDF ๋ผ์ด๋ธ๋ฌ๋ฆฌ
try:
import fitz # PyMuPDF
PYMUPDF_AVAILABLE = True
print("โ
PyMuPDF ๋ผ์ด๋ธ๋ฌ๋ฆฌ ์ฌ์ฉ ๊ฐ๋ฅ")
except ImportError:
PYMUPDF_AVAILABLE = False
print("โ ๏ธ PyMuPDF ๋ผ์ด๋ธ๋ฌ๋ฆฌ๊ฐ ์ค์น๋์ง ์์. pip install PyMuPDF๋ก ์ค์นํ์ธ์.")
# PDF ์ฒ๋ฆฌ์ฉ
import pytesseract
from PIL import Image
from pdf2image import convert_from_path
import pdfplumber
from pymupdf4llm import LlamaMarkdownReader
# --------------------------------
# ๋ก๊ทธ ์ถ๋ ฅ
# --------------------------------
def log(msg):
print(f"[{time.strftime('%H:%M:%S')}] {msg}")
# --------------------------------
# ํ
์คํธ ์ ์ ํจ์
# --------------------------------
def clean_text(text):
return re.sub(r"[^\uAC00-\uD7A3\u1100-\u11FF\u3130-\u318F\w\s.,!?\"'()$:\-]", "", text)
def apply_corrections(text):
corrections = {
'ยบยฉ': '์ ๋ณด', 'ร': '์', 'ยฝ': '์ด์', 'ร': '', 'ยฉ': '',
'รขโฌโข': "'", 'รขโฌล': '"', 'รขโฌ': '"'
}
for k, v in corrections.items():
text = text.replace(k, v)
return text
# --------------------------------
# HWPX ์ฒ๋ฆฌ (์น์
๋ณ ์ฒ๋ฆฌ๋ง ์ฌ์ฉ)
# --------------------------------
def load_hwpx(file_path):
"""HWPX ํ์ผ ๋ก๋ฉ (XML ํ์ฑ ๋ฐฉ์๋ง ์ฌ์ฉ)"""
import zipfile
import xml.etree.ElementTree as ET
import chardet
log(f"๐ฅ HWPX ์น์
๋ณ ์ฒ๋ฆฌ ์์: {file_path}")
start = time.time()
documents = []
try:
with zipfile.ZipFile(file_path, 'r') as zip_ref:
file_list = zip_ref.namelist()
section_files = [f for f in file_list
if f.startswith('Contents/section') and f.endswith('.xml')]
section_files.sort() # section0.xml, section1.xml ์์๋ก ์ ๋ ฌ
log(f"๐ ๋ฐ๊ฒฌ๋ ์น์
ํ์ผ: {len(section_files)}๊ฐ")
for section_idx, section_file in enumerate(section_files):
with zip_ref.open(section_file) as xml_file:
raw = xml_file.read()
encoding = chardet.detect(raw)['encoding'] or 'utf-8'
try:
text = raw.decode(encoding)
except UnicodeDecodeError:
text = raw.decode("cp949", errors="replace")
tree = ET.ElementTree(ET.fromstring(text))
root = tree.getroot()
# ๋ค์์คํ์ด์ค ์์ด ํ
์คํธ ์ฐพ๊ธฐ
t_elements = [elem for elem in root.iter() if elem.tag.endswith('}t') or elem.tag == 't']
body_text = ""
for elem in t_elements:
if elem.text:
body_text += clean_text(elem.text) + " "
# page ๋ฉํ๋ฐ์ดํฐ๋ ๋น ๊ฐ์ผ๋ก ์ค์
page_value = ""
if body_text.strip():
documents.append(Document(
page_content=apply_corrections(body_text),
metadata={
"source": file_path,
"filename": os.path.basename(file_path),
"type": "hwpx_body",
"page": page_value,
"total_sections": len(section_files)
}
))
log(f"โ
์น์
ํ
์คํธ ์ถ์ถ ์๋ฃ (chars: {len(body_text)})")
# ํ ์ฐพ๊ธฐ
table_elements = [elem for elem in root.iter() if elem.tag.endswith('}table') or elem.tag == 'table']
if table_elements:
table_text = ""
for table_idx, table in enumerate(table_elements):
table_text += f"[Table {table_idx + 1}]\n"
rows = [elem for elem in table.iter() if elem.tag.endswith('}tr') or elem.tag == 'tr']
for row in rows:
row_text = []
cells = [elem for elem in row.iter() if elem.tag.endswith('}tc') or elem.tag == 'tc']
for cell in cells:
cell_texts = []
for t_elem in cell.iter():
if (t_elem.tag.endswith('}t') or t_elem.tag == 't') and t_elem.text:
cell_texts.append(clean_text(t_elem.text))
row_text.append(" ".join(cell_texts))
if row_text:
table_text += "\t".join(row_text) + "\n"
if table_text.strip():
documents.append(Document(
page_content=apply_corrections(table_text),
metadata={
"source": file_path,
"filename": os.path.basename(file_path),
"type": "hwpx_table",
"page": page_value,
"total_sections": len(section_files)
}
))
log(f"๐ ํ ์ถ์ถ ์๋ฃ")
# ์ด๋ฏธ์ง ์ฐพ๊ธฐ
if [elem for elem in root.iter() if elem.tag.endswith('}picture') or elem.tag == 'picture']:
documents.append(Document(
page_content="[์ด๋ฏธ์ง ํฌํจ]",
metadata={
"source": file_path,
"filename": os.path.basename(file_path),
"type": "hwpx_image",
"page": page_value,
"total_sections": len(section_files)
}
))
log(f"๐ผ๏ธ ์ด๋ฏธ์ง ๋ฐ๊ฒฌ")
except Exception as e:
log(f"โ HWPX ์ฒ๋ฆฌ ์ค๋ฅ: {e}")
duration = time.time() - start
# ๋ฌธ์ ์ ๋ณด ์์ฝ ์ถ๋ ฅ
if documents:
log(f"๐ ์ถ์ถ๋ ๋ฌธ์ ์: {len(documents)}")
log(f"โ
HWPX ์ฒ๋ฆฌ ์๋ฃ: {file_path} โฑ๏ธ {duration:.2f}์ด, ์ด {len(documents)}๊ฐ ๋ฌธ์")
return documents
# --------------------------------
# PDF ์ฒ๋ฆฌ ํจ์๋ค (๊ธฐ์กด๊ณผ ๋์ผ)
# --------------------------------
def run_ocr_on_image(image: Image.Image, lang='kor+eng'):
return pytesseract.image_to_string(image, lang=lang)
def extract_images_with_ocr(pdf_path, lang='kor+eng'):
try:
images = convert_from_path(pdf_path)
page_ocr_data = {}
for idx, img in enumerate(images):
page_num = idx + 1
text = run_ocr_on_image(img, lang=lang)
if text.strip():
page_ocr_data[page_num] = text.strip()
return page_ocr_data
except Exception as e:
print(f"โ ์ด๋ฏธ์ง OCR ์คํจ: {e}")
return {}
def extract_tables_with_pdfplumber(pdf_path):
page_table_data = {}
try:
with pdfplumber.open(pdf_path) as pdf:
for i, page in enumerate(pdf.pages):
page_num = i + 1
tables = page.extract_tables()
table_text = ""
for t_index, table in enumerate(tables):
if table:
table_text += f"[Table {t_index+1}]\n"
for row in table:
row_text = "\t".join(cell if cell else "" for cell in row)
table_text += row_text + "\n"
if table_text.strip():
page_table_data[page_num] = table_text.strip()
return page_table_data
except Exception as e:
print(f"โ ํ ์ถ์ถ ์คํจ: {e}")
return {}
def extract_body_text_with_pages(pdf_path):
page_body_data = {}
try:
pdf_processor = LlamaMarkdownReader()
docs = pdf_processor.load_data(file_path=pdf_path)
combined_text = ""
for d in docs:
if isinstance(d, dict) and "text" in d:
combined_text += d["text"]
elif hasattr(d, "text"):
combined_text += d.text
if combined_text.strip():
chars_per_page = 2000
start = 0
page_num = 1
while start < len(combined_text):
end = start + chars_per_page
if end > len(combined_text):
end = len(combined_text)
page_text = combined_text[start:end]
if page_text.strip():
page_body_data[page_num] = page_text.strip()
page_num += 1
if end == len(combined_text):
break
start = end - 100
except Exception as e:
print(f"โ ๋ณธ๋ฌธ ์ถ์ถ ์คํจ: {e}")
return page_body_data
def load_pdf_with_metadata(pdf_path):
"""PDF ํ์ผ์์ ํ์ด์ง๋ณ ์ ๋ณด๋ฅผ ์ถ์ถ"""
log(f"๐ PDF ํ์ด์ง๋ณ ์ฒ๋ฆฌ ์์: {pdf_path}")
start = time.time()
# ๋จผ์ PyPDFLoader๋ก ์ค์ ํ์ด์ง ์ ํ์ธ
try:
from langchain_community.document_loaders import PyPDFLoader
loader = PyPDFLoader(pdf_path)
pdf_pages = loader.load()
actual_total_pages = len(pdf_pages)
log(f"๐ PyPDFLoader๋ก ํ์ธํ ์ค์ ํ์ด์ง ์: {actual_total_pages}")
except Exception as e:
log(f"โ PyPDFLoader ํ์ด์ง ์ ํ์ธ ์คํจ: {e}")
actual_total_pages = 1
try:
page_tables = extract_tables_with_pdfplumber(pdf_path)
except Exception as e:
page_tables = {}
print(f"โ ํ ์ถ์ถ ์คํจ: {e}")
try:
page_ocr = extract_images_with_ocr(pdf_path)
except Exception as e:
page_ocr = {}
print(f"โ ์ด๋ฏธ์ง OCR ์คํจ: {e}")
try:
page_body = extract_body_text_with_pages(pdf_path)
except Exception as e:
page_body = {}
print(f"โ ๋ณธ๋ฌธ ์ถ์ถ ์คํจ: {e}")
duration = time.time() - start
log(f"โ
PDF ํ์ด์ง๋ณ ์ฒ๋ฆฌ ์๋ฃ: {pdf_path} โฑ๏ธ {duration:.2f}์ด")
# ์ค์ ํ์ด์ง ์๋ฅผ ๊ธฐ์ค์ผ๋ก ์ค์
all_pages = set(page_tables.keys()) | set(page_ocr.keys()) | set(page_body.keys())
if all_pages:
max_extracted_page = max(all_pages)
# ์ค์ ํ์ด์ง ์์ ์ถ์ถ๋ ํ์ด์ง ์ ์ค ํฐ ๊ฐ ์ฌ์ฉ
total_pages = max(actual_total_pages, max_extracted_page)
else:
total_pages = actual_total_pages
log(f"๐ ์ต์ข
์ค์ ๋ ์ด ํ์ด์ง ์: {total_pages}")
docs = []
for page_num in sorted(all_pages):
if page_num in page_tables and page_tables[page_num].strip():
docs.append(Document(
page_content=clean_text(apply_corrections(page_tables[page_num])),
metadata={
"source": pdf_path,
"filename": os.path.basename(pdf_path),
"type": "table",
"page": page_num,
"total_pages": total_pages
}
))
log(f"๐ ํ์ด์ง {page_num}: ํ ์ถ์ถ ์๋ฃ")
if page_num in page_body and page_body[page_num].strip():
docs.append(Document(
page_content=clean_text(apply_corrections(page_body[page_num])),
metadata={
"source": pdf_path,
"filename": os.path.basename(pdf_path),
"type": "body",
"page": page_num,
"total_pages": total_pages
}
))
log(f"๐ ํ์ด์ง {page_num}: ๋ณธ๋ฌธ ์ถ์ถ ์๋ฃ")
if page_num in page_ocr and page_ocr[page_num].strip():
docs.append(Document(
page_content=clean_text(apply_corrections(page_ocr[page_num])),
metadata={
"source": pdf_path,
"filename": os.path.basename(pdf_path),
"type": "ocr",
"page": page_num,
"total_pages": total_pages
}
))
log(f"๐ผ๏ธ ํ์ด์ง {page_num}: OCR ์ถ์ถ ์๋ฃ")
if not docs:
docs.append(Document(
page_content="[๋ด์ฉ ์ถ์ถ ์คํจ]",
metadata={
"source": pdf_path,
"filename": os.path.basename(pdf_path),
"type": "error",
"page": 1,
"total_pages": total_pages
}
))
# ํ์ด์ง ์ ๋ณด ์์ฝ ์ถ๋ ฅ
if docs:
page_numbers = [doc.metadata.get('page', 0) for doc in docs if doc.metadata.get('page')]
if page_numbers:
log(f"๐ ์ถ์ถ๋ ํ์ด์ง ๋ฒ์: {min(page_numbers)} ~ {max(page_numbers)}")
log(f"๐ ์ถ์ถ๋ ํ์ด์ง๋ณ PDF ๋ฌธ์: {len(docs)}๊ฐ (์ด {total_pages}ํ์ด์ง)")
return docs
# --------------------------------
# ๋ฌธ์ ๋ก๋ฉ ๋ฐ ๋ถํ
# --------------------------------
def load_documents(folder_path):
documents = []
for file in glob.glob(os.path.join(folder_path, "*.hwpx")):
log(f"๐ HWPX ํ์ผ ํ์ธ: {file}")
docs = load_hwpx(file)
documents.extend(docs)
for file in glob.glob(os.path.join(folder_path, "*.pdf")):
log(f"๐ PDF ํ์ผ ํ์ธ: {file}")
documents.extend(load_pdf_with_metadata(file))
log(f"๐ ๋ฌธ์ ๋ก๋ฉ ์ ์ฒด ์๋ฃ! ์ด ๋ฌธ์ ์: {len(documents)}")
return documents
def split_documents(documents, chunk_size=800, chunk_overlap=100):
log("๐ช ์ฒญํฌ ๋ถํ ์์")
splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
length_function=len
)
chunks = []
for doc in documents:
split = splitter.split_text(doc.page_content)
for i, chunk in enumerate(split):
enriched_chunk = f"passage: {chunk}"
chunks.append(Document(
page_content=enriched_chunk,
metadata={**doc.metadata, "chunk_index": i}
))
log(f"โ
์ฒญํฌ ๋ถํ ์๋ฃ: ์ด {len(chunks)}๊ฐ ์์ฑ")
return chunks
# --------------------------------
# ๋ฉ์ธ ์คํ
# --------------------------------
if __name__ == "__main__":
folder = "dataset_test"
log("๐ PyMuPDF ๊ธฐ๋ฐ ๋ฌธ์ ์ฒ๋ฆฌ ์์")
docs = load_documents(folder)
log("๐ฆ ๋ฌธ์ ๋ก๋ฉ ์๋ฃ")
# ํ์ด์ง ์ ๋ณด ํ์ธ
log("๐ ํ์ด์ง ์ ๋ณด ์์ฝ:")
page_info = {}
for doc in docs:
source = doc.metadata.get('source', 'unknown')
page = doc.metadata.get('page', 'unknown')
doc_type = doc.metadata.get('type', 'unknown')
if source not in page_info:
page_info[source] = {'pages': set(), 'types': set()}
page_info[source]['pages'].add(page)
page_info[source]['types'].add(doc_type)
for source, info in page_info.items():
max_page = max(info['pages']) if info['pages'] and isinstance(max(info['pages']), int) else 'unknown'
log(f" ๐ {os.path.basename(source)}: {max_page}ํ์ด์ง, ํ์
: {info['types']}")
chunks = split_documents(docs)
log("๐ก E5-Large-Instruct ์๋ฒ ๋ฉ ์ค๋น ์ค")
embedding_model = HuggingFaceEmbeddings(
model_name="intfloat/e5-large-v2",
model_kwargs={"device": "cuda"}
)
vectorstore = FAISS.from_documents(chunks, embedding_model)
vectorstore.save_local("vector_db")
log(f"๐ ์ ์ฒด ๋ฌธ์ ์: {len(docs)}")
log(f"๐ ์ฒญํฌ ์ด ์: {len(chunks)}")
log("โ
FAISS ์ ์ฅ ์๋ฃ: vector_db")
# ํ์ด์ง ์ ๋ณด๊ฐ ํฌํจ๋ ์ํ ์ถ๋ ฅ
log("\n๐ ์ค์ ํ์ด์ง ์ ๋ณด ํฌํจ ์ํ:")
for i, chunk in enumerate(chunks[:5]):
meta = chunk.metadata
log(f" ์ฒญํฌ {i+1}: {meta.get('type')} | ํ์ด์ง {meta.get('page')} | {os.path.basename(meta.get('source', 'unknown'))}")
|