File size: 47,385 Bytes
6e97887
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
{
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "view-in-github",
        "colab_type": "text"
      },
      "source": [
        "<a href=\"https://colab.research.google.com/github/NaveenSanjaya/Right-Vote/blob/main/Win_Predictor.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
      ]
    },
    {
      "cell_type": "markdown",
      "id": "1ecdf2ae",
      "metadata": {
        "id": "1ecdf2ae"
      },
      "source": [
        "### Web Scraping"
      ]
    },
    {
      "cell_type": "markdown",
      "id": "af20daad",
      "metadata": {
        "id": "af20daad"
      },
      "source": [
        "The data was collected from IHP Sri Lanka(https://www.ihp.lk/taxonomy/term/135) and Numbers.lk(https://numbers.lk/analysis\n",
        ")."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "id": "d5e515be",
      "metadata": {
        "id": "d5e515be",
        "outputId": "88580cac-44ce-413f-d500-63de8a3c0dc8"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "[\"Numbers.lk's first pre-election poll results point to Anura Kumara Dissanayake as the frontrunner in Sri Lanka's upcoming presidential election, though no candidate has secured a clear majority yet. The poll surveyed 2,048 adults across all 22 electoral districts online from April 4-18, and it has a margin of error of +/- 3.5%.\", 'According to the survey finding,  Anura Kumara Dissanayaka leads the presidential race with 46% support among Sri Lankan adults. He holds a substantial lead over Sajith Premadasa, who has 22% support, and the incumbent President Ranil Wickremesinghe, who trails with 18%. However, with 10% of voters still undecided and another 4% backing other candidates, the race remains open for potential shifts before election day.', \"Anuna Kumara Dissanayake's core strengths lie with Sri Lanka's youngest voters, securing a staggering 67% support among first-time voters. He also leads comfortably among the under-40 crowd. Premadasa counters with a base among older generations whose highest educational attainment is below A/L levels.\\nHowever, Premadasa significantly lags with first-time voters compared to the other top candidates. Only 3% of these crucial first time voters say they plan to vote for the SJB's Sajith Premadasa. At the same time, incumbent President Ranil Wickremesinghe captures 10% approval in this group.\\nAnother 10% of first-time voters report intending to vote for other candidates outside the top three. And a further 10% remain undecided, leaving a substantial pool of young votes still up for grabs.\", \"When it comes to older voters, support for the traditional candidates rises along with age. Sajith Premadasa's strongest base comes from voters aged 41 and above whose highest educational attainment is below A/L levels. In this demographic, Sajith Premadasa leads with 38% support, while Anura Kumara Dissanayake could muster only 28% backing. Ranil Wickremesinghe captures 21% of these older, comparatively less educated demographic while 14% remain undecided.\", \"This cohort represents by far the largest voter block in the country, with over 40% of Sri Lanka's total electorate falling into the category of being 41 or older with education below A/L level. Their sheer numbers give outsized importance to whichever candidate can most effectively court these more traditionalist voters with modest educational credentials.\", 'The sampling procedure and stratification weighting yield an overall margin of sampling error of ±3.5 percentage points at the 95% confidence level for the full unweighted sample of 2,048 Sri Lankan adults. This margin of error accounts for design effects from the weighting process.']\n"
          ]
        }
      ],
      "source": [
        "import requests\n",
        "from bs4 import BeautifulSoup\n",
        "import csv\n",
        "\n",
        "# URL of the page with the poll results\n",
        "url = \"https://numbers.lk/analysis/numbers-lk-s-first-pre-election-poll-results-akd-emerges-as-frontrunner-but-falls-short-of-the-crucial-50\"\n",
        "\n",
        "# Fetch the content of the page\n",
        "response = requests.get(url)\n",
        "html_content = response.content\n",
        "\n",
        "# Parse the page using BeautifulSoup\n",
        "soup = BeautifulSoup(html_content, 'html.parser')\n",
        "\n",
        "# Find all relevant text sections\n",
        "poll_results = []\n",
        "\n",
        "for paragraph in soup.find_all('p'):\n",
        "    text = paragraph.get_text().strip()\n",
        "    if \"AKD\" in text or \"%\" in text:  # Filter based on content to capture poll data\n",
        "        poll_results.append(text)\n",
        "\n",
        "print(poll_results)\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "id": "50194477",
      "metadata": {
        "id": "50194477",
        "outputId": "19149067-60a7-4bb5-be5a-ad666ee93034"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "['In first half of 2024, the most notable changes in voting intent were the rise in support for President Ranil Wickremasinghe as a potential Presidential candidate at the apparent expense of support for likely candidates from the NPP, SJB and SLPP. In IHP’s MRP (Multilevel Regression and Post-Stratification) model projections, support for NPP leader Anura Dissanayake, SJB leader Sajith Premadasa, and a generic SLPP candidate declined by 7%, 1% and 5% respectively from the first two months of the year to June/July 2024. The main beneficiary was President Wickremesinghe, whose support more than doubled, increasing 13% to 22% during the same period, although this still left him trailing in third place.', 'NPP leader, Anura Dissanayake, registered losses in support across most demographics, but the biggest losses were in his core base of the better-off, Sinhala and youth (1829 years) voters, where support fell 12, 9, and 17 points respectively. Support amongst voters with a favourable view of the Aragalaya fell 9%–a bigger fall than Sajith Premadasa experienced, although he retained a strong lead over his opponents in these voters. He also lost support amongst voters who voted for Gotabaya Rajapakse or Sajith Premadasa in 2019, although the MRP estimates suggest he managed to consolidate his 2019 Presidential Election voters.', 'The shifts away from both Anura Dissanayake and Sajith Premadasa seem to have been largely to the gain of President Ranil Wickremesinghe. His support rose across all demographics, except in Muslims. This included a larger gain in women (+17% vs. +8% in men), improving his better performance in women. Shifts in his favour were biggest in better-off (+17), Sinhala (+16), older (+24), and former Gotabaya Rajapakse (+20) voters. But notably the biggest shifts in his favour were in anti-Aragalaya voters, where he gained 26 points to build a lead over all other likely candidates. To a considerable extent, President Wickremesinghe has been a major beneficiary of the core pro-government/Rajapakse/SLPP vote, which in the first half of the year largely collapsed across all demographics.', 'Unlike in conventional opinion surveys, IHP’s SLOTS MRP voting intent estimates are not weighted tabulations of the raw survey responses. First, non-responses and refusals to the voting history and voting intent questions are handled by multiple imputation models that consider a wide range of respondent characteristics and impute the probability distribution of who the respondent might have voted for or would vote for. Second, voting intent is estimated using Multilevel Regression and Post-Stratification (MRP) modelling. MRP involves modelling the voting choices of respondents in relation to their characteristics, and then using the estimated model parameters to predict how the full adult population would vote. As MRP does not lend itself to standard computations of survey error, IHP uses a multiple imputation approach to estimate the uncertainty in its model predictions, and this is reported as the margin of error. Specifically, the margin of error represents IHP’s best estimates of the range in which the true levels of voting intent would lie 95% of the time. The MoE here represents uncertainty related to how well the MRP model fits the observed data, as well as traditional sampling noise. However, it does not capture any systematic errors that might arise due to non-sample bias, such as when supporters of one party are less likely to be reached by phone or agree to be interviewed.', 'The analysis reported here are based on modelling of responses from 18,206 interviews conducted from 1 December 2021 to 19 August 2024, including 1,077 interviews conducted in January/February 2024 and 1,146 interviews conducted in June/July 2024. The margins of error are assessed as 24% for Ranil Wickremesinghe, Sajith Premadasa, and AK Dissanayake.']\n"
          ]
        }
      ],
      "source": [
        "import requests\n",
        "from bs4 import BeautifulSoup\n",
        "import csv\n",
        "\n",
        "# URL of the page with the poll results\n",
        "url = \"https://www.ihp.lk/research-updates/changes-support-leading-presidential-candidates-during-2024-lead-campaign-period\"\n",
        "\n",
        "# Fetch the content of the page\n",
        "response = requests.get(url)\n",
        "html_content = response.content\n",
        "\n",
        "# Parse the page using BeautifulSoup\n",
        "soup = BeautifulSoup(html_content, 'html.parser')\n",
        "\n",
        "# Find all relevant text sections\n",
        "poll_results = []\n",
        "\n",
        "for paragraph in soup.find_all('p'):\n",
        "    text = paragraph.get_text().strip()\n",
        "    if \"AKD\" in text or \"%\" in text:  # Filter based on content to capture poll data\n",
        "        poll_results.append(text)\n",
        "\n",
        "print(poll_results)\n"
      ]
    },
    {
      "cell_type": "markdown",
      "id": "b32deb3d",
      "metadata": {
        "id": "b32deb3d"
      },
      "source": [
        "### Data Collection and Pre Processing"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "id": "f753cdb3",
      "metadata": {
        "id": "f753cdb3",
        "outputId": "2b4b3232-aa2d-4fe7-8c1b-48d0c8fe945e"
      },
      "outputs": [
        {
          "data": {
            "text/html": [
              "<div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>date</th>\n",
              "      <th>age_group</th>\n",
              "      <th>education</th>\n",
              "      <th>AKD_support</th>\n",
              "      <th>Premadasa_support</th>\n",
              "      <th>Ranil_support</th>\n",
              "      <th>undecided</th>\n",
              "      <th>other_support</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>0</th>\n",
              "      <td>04.05.2024</td>\n",
              "      <td>adults</td>\n",
              "      <td>common</td>\n",
              "      <td>67</td>\n",
              "      <td>3</td>\n",
              "      <td>10</td>\n",
              "      <td>10</td>\n",
              "      <td>10</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>1</th>\n",
              "      <td>04.05.2024</td>\n",
              "      <td>over_40</td>\n",
              "      <td>below_AL</td>\n",
              "      <td>28</td>\n",
              "      <td>38</td>\n",
              "      <td>21</td>\n",
              "      <td>14</td>\n",
              "      <td>0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>2</th>\n",
              "      <td>04.05.2024</td>\n",
              "      <td>young</td>\n",
              "      <td>common</td>\n",
              "      <td>46</td>\n",
              "      <td>22</td>\n",
              "      <td>18</td>\n",
              "      <td>10</td>\n",
              "      <td>4</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>3</th>\n",
              "      <td>25.08.2024</td>\n",
              "      <td>adults</td>\n",
              "      <td>common</td>\n",
              "      <td>43</td>\n",
              "      <td>27</td>\n",
              "      <td>22</td>\n",
              "      <td>2</td>\n",
              "      <td>2</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "</div>"
            ],
            "text/plain": [
              "         date age_group education  AKD_support  Premadasa_support  \\\n",
              "0  04.05.2024    adults    common           67                  3   \n",
              "1  04.05.2024   over_40  below_AL           28                 38   \n",
              "2  04.05.2024     young    common           46                 22   \n",
              "3  25.08.2024    adults    common           43                 27   \n",
              "\n",
              "   Ranil_support  undecided  other_support  \n",
              "0             10         10             10  \n",
              "1             21         14              0  \n",
              "2             18         10              4  \n",
              "3             22          2              2  "
            ]
          },
          "execution_count": 3,
          "metadata": {},
          "output_type": "execute_result"
        }
      ],
      "source": [
        "import pandas as pd\n",
        "from sklearn.model_selection import train_test_split\n",
        "from sklearn.ensemble import RandomForestClassifier\n",
        "from sklearn.metrics import accuracy_score\n",
        "\n",
        "# Sample data in dictionary format based on the information provided\n",
        "data = {\n",
        "    'date':['04.05.2024','04.05.2024','04.05.2024','25.08.2024'],\n",
        "    'age_group': ['adults', 'over_40', 'young', 'adults'],\n",
        "    'education': ['common', 'below_AL', 'common','common'],\n",
        "    'AKD_support': [67, 28, 46, 43],\n",
        "    'Premadasa_support': [3, 38, 22,27],\n",
        "    'Ranil_support': [10, 21, 18, 22],\n",
        "    'undecided': [10, 14, 10, 2],\n",
        "    'other_support': [10, 0, 4, 2],\n",
        "}\n",
        "\n",
        "# Convert the dictionary to a pandas DataFrame\n",
        "df = pd.DataFrame(data)\n",
        "\n",
        "# Convert categorical data to numerical using one-hot encoding\n",
        "df_encoded = pd.get_dummies(df, columns=['age_group', 'education'])\n",
        "\n",
        "df"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "id": "8fd57451",
      "metadata": {
        "id": "8fd57451",
        "outputId": "414b57ed-704b-4d7c-e060-ae93aed00c25"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Updated DataFrame:\n",
            "              Candidate  July_2024_Support  August_2024_Support  \\\n",
            "0        AK Dissanayake                 37                   36   \n",
            "1      Sajith Premadasa                 36                   32   \n",
            "2  Ranil Wickremesinghe                 23                   33   \n",
            "3       Namal Rajapaksa                  4                    3   \n",
            "\n",
            "   July_2024_Favorability  August_2024_Favorability  \n",
            "0                       3                       -21  \n",
            "1                     -44                       -32  \n",
            "2                     -24                       -33  \n",
            "3                     -89                       -89  \n",
            "\n",
            "Average Support (July 2024): 25.0\n",
            "Average Support (August 2024): 26.0\n"
          ]
        },
        {
          "data": {
            "text/html": [
              "<div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>Candidate</th>\n",
              "      <th>July_2024_Support</th>\n",
              "      <th>August_2024_Support</th>\n",
              "      <th>July_2024_Favorability</th>\n",
              "      <th>August_2024_Favorability</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>0</th>\n",
              "      <td>AK Dissanayake</td>\n",
              "      <td>37</td>\n",
              "      <td>36</td>\n",
              "      <td>3</td>\n",
              "      <td>-21</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>1</th>\n",
              "      <td>Sajith Premadasa</td>\n",
              "      <td>36</td>\n",
              "      <td>32</td>\n",
              "      <td>-44</td>\n",
              "      <td>-32</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>2</th>\n",
              "      <td>Ranil Wickremesinghe</td>\n",
              "      <td>23</td>\n",
              "      <td>33</td>\n",
              "      <td>-24</td>\n",
              "      <td>-33</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>3</th>\n",
              "      <td>Namal Rajapaksa</td>\n",
              "      <td>4</td>\n",
              "      <td>3</td>\n",
              "      <td>-89</td>\n",
              "      <td>-89</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "</div>"
            ],
            "text/plain": [
              "              Candidate  July_2024_Support  August_2024_Support  \\\n",
              "0        AK Dissanayake                 37                   36   \n",
              "1      Sajith Premadasa                 36                   32   \n",
              "2  Ranil Wickremesinghe                 23                   33   \n",
              "3       Namal Rajapaksa                  4                    3   \n",
              "\n",
              "   July_2024_Favorability  August_2024_Favorability  \n",
              "0                       3                       -21  \n",
              "1                     -44                       -32  \n",
              "2                     -24                       -33  \n",
              "3                     -89                       -89  "
            ]
          },
          "execution_count": 5,
          "metadata": {},
          "output_type": "execute_result"
        }
      ],
      "source": [
        "data = {\n",
        "    'Candidate': ['AK Dissanayake', 'Sajith Premadasa', 'Ranil Wickremesinghe', 'Namal Rajapaksa'],\n",
        "    'July_2024_Support': [37, 36, 23, 4],\n",
        "    'August_2024_Support': [36, 32, 28, 3],\n",
        "    'July_2024_Favorability': [3, -44, -24, -89],\n",
        "    'August_2024_Favorability': [-21, -32, -33, -89]\n",
        "}\n",
        "\n",
        "df = pd.DataFrame(data)\n",
        "\n",
        "# Example update: Increase support for Ranil Wickremesinghe by 5% in August\n",
        "df.loc[df['Candidate'] == 'Ranil Wickremesinghe', 'August_2024_Support'] += 5\n",
        "\n",
        "# Example analysis: Calculate average support\n",
        "average_support_july = df['July_2024_Support'].mean()\n",
        "average_support_august = df['August_2024_Support'].mean()\n",
        "\n",
        "# Example output\n",
        "print(\"Updated DataFrame:\")\n",
        "print(df)\n",
        "print(\"\\nAverage Support (July 2024):\", average_support_july)\n",
        "print(\"Average Support (August 2024):\", average_support_august)\n",
        "\n",
        "df"
      ]
    },
    {
      "cell_type": "markdown",
      "id": "7b3552e3",
      "metadata": {
        "id": "7b3552e3"
      },
      "source": [
        "#### Comparison of past pre election polls and final results"
      ]
    },
    {
      "cell_type": "markdown",
      "id": "65dd44bf",
      "metadata": {
        "id": "65dd44bf"
      },
      "source": [
        "https://numbers.lk/analysis/presidential-election-2024-voter-perception-analysis"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "id": "f36bf3db",
      "metadata": {
        "id": "f36bf3db",
        "outputId": "9b3fc3a8-d169-41d1-e681-df225fd4c1f0"
      },
      "outputs": [
        {
          "data": {
            "text/html": [
              "<div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>Candidate</th>\n",
              "      <th>2019_polls</th>\n",
              "      <th>Final_result</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>0</th>\n",
              "      <td>Candidate 1</td>\n",
              "      <td>54</td>\n",
              "      <td>52.25</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>1</th>\n",
              "      <td>Candidate 2</td>\n",
              "      <td>39</td>\n",
              "      <td>41.99</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>2</th>\n",
              "      <td>Candidate 3</td>\n",
              "      <td>5</td>\n",
              "      <td>3.16</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "</div>"
            ],
            "text/plain": [
              "     Candidate  2019_polls  Final_result\n",
              "0  Candidate 1          54         52.25\n",
              "1  Candidate 2          39         41.99\n",
              "2  Candidate 3           5          3.16"
            ]
          },
          "execution_count": 8,
          "metadata": {},
          "output_type": "execute_result"
        }
      ],
      "source": [
        "# 2019 pre-election polls and final election results\n",
        "data_2019 = {\n",
        "    'Candidate': ['Candidate 1', 'Candidate 2', 'Candidate 3'],\n",
        "    '2019_polls': [54, 39, 5],\n",
        "    'Final_result': [52.25, 41.99, 3.16]\n",
        "}\n",
        "# Convert 2019 data to a DataFrame\n",
        "df_2019 = pd.DataFrame(data_2019)\n",
        "\n",
        "df_2019"
      ]
    },
    {
      "cell_type": "markdown",
      "id": "2115aef9",
      "metadata": {
        "id": "2115aef9"
      },
      "source": [
        "### Predictions using LSTM model"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "id": "8917f20c",
      "metadata": {
        "id": "8917f20c",
        "outputId": "af433b32-89d3-4b3d-fea1-f4a62bdc8cc6"
      },
      "outputs": [
        {
          "data": {
            "text/html": [
              "<div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>Candidate</th>\n",
              "      <th>April_2024</th>\n",
              "      <th>May_2024</th>\n",
              "      <th>June_2024</th>\n",
              "      <th>July_2024</th>\n",
              "      <th>August_2024</th>\n",
              "      <th>September_2024</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>0</th>\n",
              "      <td>AK Dissanayake</td>\n",
              "      <td>46</td>\n",
              "      <td>39</td>\n",
              "      <td>38</td>\n",
              "      <td>37</td>\n",
              "      <td>36</td>\n",
              "      <td>43</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>1</th>\n",
              "      <td>Sajith Premadasa</td>\n",
              "      <td>22</td>\n",
              "      <td>39</td>\n",
              "      <td>38</td>\n",
              "      <td>36</td>\n",
              "      <td>32</td>\n",
              "      <td>27</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>2</th>\n",
              "      <td>Ranil Wickremesinghe</td>\n",
              "      <td>18</td>\n",
              "      <td>15</td>\n",
              "      <td>18</td>\n",
              "      <td>23</td>\n",
              "      <td>33</td>\n",
              "      <td>22</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>3</th>\n",
              "      <td>other</td>\n",
              "      <td>14</td>\n",
              "      <td>7</td>\n",
              "      <td>6</td>\n",
              "      <td>4</td>\n",
              "      <td>3</td>\n",
              "      <td>8</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "</div>"
            ],
            "text/plain": [
              "              Candidate  April_2024  May_2024  June_2024  July_2024  \\\n",
              "0        AK Dissanayake          46        39         38         37   \n",
              "1      Sajith Premadasa          22        39         38         36   \n",
              "2  Ranil Wickremesinghe          18        15         18         23   \n",
              "3                 other          14         7          6          4   \n",
              "\n",
              "   August_2024  September_2024  \n",
              "0           36              43  \n",
              "1           32              27  \n",
              "2           33              22  \n",
              "3            3               8  "
            ]
          },
          "execution_count": 6,
          "metadata": {},
          "output_type": "execute_result"
        }
      ],
      "source": [
        "# 2024 poll data\n",
        "data_2024 = {\n",
        "    'Candidate': ['AK Dissanayake', 'Sajith Premadasa', 'Ranil Wickremesinghe', 'other'],\n",
        "    'April_2024':[46,22,18,14],\n",
        "    'May_2024': [39, 39, 15, 7],\n",
        "    'June_2024': [38, 38, 18, 6],\n",
        "    'July_2024': [37, 36, 23, 4],\n",
        "    'August_2024': [36, 32, 33, 3],\n",
        "    'September_2024': [43, 27, 22, 8]\n",
        "}\n",
        "\n",
        "# Create DataFrame\n",
        "df_2024 = pd.DataFrame(data_2024)\n",
        "\n",
        "df_2024"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "id": "728f6ade",
      "metadata": {
        "id": "728f6ade",
        "outputId": "7380ddd8-f221-4efd-cb9c-d09d8f8c50aa"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Epoch 1/100\n",
            "1/1 [==============================] - 2s 2s/step - loss: 1.0014\n",
            "Epoch 2/100\n",
            "1/1 [==============================] - 0s 11ms/step - loss: 1.0007\n",
            "Epoch 3/100\n",
            "1/1 [==============================] - 0s 8ms/step - loss: 1.0003\n",
            "Epoch 4/100\n",
            "1/1 [==============================] - 0s 9ms/step - loss: 1.0000\n",
            "Epoch 5/100\n",
            "1/1 [==============================] - 0s 7ms/step - loss: 1.0000\n",
            "Epoch 6/100\n",
            "1/1 [==============================] - 0s 8ms/step - loss: 1.0001\n",
            "Epoch 7/100\n",
            "1/1 [==============================] - 0s 9ms/step - loss: 1.0002\n",
            "Epoch 8/100\n",
            "1/1 [==============================] - 0s 8ms/step - loss: 1.0003\n",
            "Epoch 9/100\n",
            "1/1 [==============================] - 0s 8ms/step - loss: 1.0003\n",
            "Epoch 10/100\n",
            "1/1 [==============================] - 0s 9ms/step - loss: 1.0003\n",
            "Epoch 11/100\n",
            "1/1 [==============================] - 0s 8ms/step - loss: 1.0002\n",
            "Epoch 12/100\n",
            "1/1 [==============================] - 0s 8ms/step - loss: 1.0001\n",
            "Epoch 13/100\n",
            "1/1 [==============================] - 0s 8ms/step - loss: 1.0000\n",
            "Epoch 14/100\n",
            "1/1 [==============================] - 0s 9ms/step - loss: 1.0000\n",
            "Epoch 15/100\n",
            "1/1 [==============================] - 0s 7ms/step - loss: 1.0000\n",
            "Epoch 16/100\n",
            "1/1 [==============================] - 0s 9ms/step - loss: 1.0000\n",
            "Epoch 17/100\n",
            "1/1 [==============================] - 0s 8ms/step - loss: 1.0000\n",
            "Epoch 18/100\n",
            "1/1 [==============================] - 0s 8ms/step - loss: 1.0001\n",
            "Epoch 19/100\n",
            "1/1 [==============================] - 0s 8ms/step - loss: 1.0001\n",
            "Epoch 20/100\n",
            "1/1 [==============================] - 0s 7ms/step - loss: 1.0001\n",
            "Epoch 21/100\n",
            "1/1 [==============================] - 0s 7ms/step - loss: 1.0001\n",
            "Epoch 22/100\n",
            "1/1 [==============================] - 0s 8ms/step - loss: 1.0001\n",
            "Epoch 23/100\n",
            "1/1 [==============================] - 0s 8ms/step - loss: 1.0000\n",
            "Epoch 24/100\n",
            "1/1 [==============================] - 0s 8ms/step - loss: 1.0000\n",
            "Epoch 25/100\n",
            "1/1 [==============================] - 0s 8ms/step - loss: 1.0000\n",
            "Epoch 26/100\n",
            "1/1 [==============================] - 0s 7ms/step - loss: 1.0000\n",
            "Epoch 27/100\n",
            "1/1 [==============================] - 0s 9ms/step - loss: 1.0000\n",
            "Epoch 28/100\n",
            "1/1 [==============================] - 0s 9ms/step - loss: 1.0000\n",
            "Epoch 29/100\n",
            "1/1 [==============================] - 0s 8ms/step - loss: 1.0000\n",
            "Epoch 30/100\n",
            "1/1 [==============================] - 0s 9ms/step - loss: 1.0000\n",
            "Epoch 31/100\n",
            "1/1 [==============================] - 0s 8ms/step - loss: 1.0000\n",
            "Epoch 32/100\n",
            "1/1 [==============================] - 0s 8ms/step - loss: 1.0000\n",
            "Epoch 33/100\n",
            "1/1 [==============================] - 0s 10ms/step - loss: 1.0000\n",
            "Epoch 34/100\n",
            "1/1 [==============================] - 0s 7ms/step - loss: 1.0000\n",
            "Epoch 35/100\n",
            "1/1 [==============================] - 0s 13ms/step - loss: 1.0000\n",
            "Epoch 36/100\n",
            "1/1 [==============================] - 0s 11ms/step - loss: 1.0000\n",
            "Epoch 37/100\n",
            "1/1 [==============================] - 0s 10ms/step - loss: 1.0000\n",
            "Epoch 38/100\n",
            "1/1 [==============================] - 0s 8ms/step - loss: 1.0000\n",
            "Epoch 39/100\n",
            "1/1 [==============================] - 0s 10ms/step - loss: 1.0000\n",
            "Epoch 40/100\n",
            "1/1 [==============================] - 0s 11ms/step - loss: 1.0000\n",
            "Epoch 41/100\n",
            "1/1 [==============================] - 0s 14ms/step - loss: 1.0000\n",
            "Epoch 42/100\n",
            "1/1 [==============================] - 0s 11ms/step - loss: 1.0000\n",
            "Epoch 43/100\n",
            "1/1 [==============================] - 0s 11ms/step - loss: 1.0000\n",
            "Epoch 44/100\n",
            "1/1 [==============================] - 0s 11ms/step - loss: 1.0000\n",
            "Epoch 45/100\n",
            "1/1 [==============================] - 0s 12ms/step - loss: 1.0000\n",
            "Epoch 46/100\n",
            "1/1 [==============================] - 0s 10ms/step - loss: 1.0000\n",
            "Epoch 47/100\n",
            "1/1 [==============================] - 0s 10ms/step - loss: 1.0000\n",
            "Epoch 48/100\n",
            "1/1 [==============================] - 0s 9ms/step - loss: 1.0000\n",
            "Epoch 49/100\n",
            "1/1 [==============================] - 0s 9ms/step - loss: 1.0000\n",
            "Epoch 50/100\n",
            "1/1 [==============================] - 0s 8ms/step - loss: 1.0000\n",
            "Epoch 51/100\n",
            "1/1 [==============================] - 0s 9ms/step - loss: 1.0000\n",
            "Epoch 52/100\n",
            "1/1 [==============================] - 0s 7ms/step - loss: 1.0000\n",
            "Epoch 53/100\n",
            "1/1 [==============================] - 0s 8ms/step - loss: 1.0000\n",
            "Epoch 54/100\n",
            "1/1 [==============================] - 0s 8ms/step - loss: 1.0000\n",
            "Epoch 55/100\n",
            "1/1 [==============================] - 0s 9ms/step - loss: 1.0000\n",
            "Epoch 56/100\n",
            "1/1 [==============================] - 0s 8ms/step - loss: 1.0000\n",
            "Epoch 57/100\n",
            "1/1 [==============================] - 0s 9ms/step - loss: 1.0000\n",
            "Epoch 58/100\n",
            "1/1 [==============================] - 0s 9ms/step - loss: 1.0000\n",
            "Epoch 59/100\n",
            "1/1 [==============================] - 0s 8ms/step - loss: 1.0000\n",
            "Epoch 60/100\n",
            "1/1 [==============================] - 0s 7ms/step - loss: 1.0000\n",
            "Epoch 61/100\n",
            "1/1 [==============================] - 0s 9ms/step - loss: 1.0000\n",
            "Epoch 62/100\n",
            "1/1 [==============================] - 0s 7ms/step - loss: 1.0000\n",
            "Epoch 63/100\n",
            "1/1 [==============================] - 0s 7ms/step - loss: 1.0000\n",
            "Epoch 64/100\n",
            "1/1 [==============================] - 0s 7ms/step - loss: 1.0000\n",
            "Epoch 65/100\n",
            "1/1 [==============================] - 0s 8ms/step - loss: 1.0000\n",
            "Epoch 66/100\n",
            "1/1 [==============================] - 0s 8ms/step - loss: 1.0000\n",
            "Epoch 67/100\n",
            "1/1 [==============================] - 0s 7ms/step - loss: 1.0000\n",
            "Epoch 68/100\n",
            "1/1 [==============================] - 0s 7ms/step - loss: 1.0000\n",
            "Epoch 69/100\n",
            "1/1 [==============================] - 0s 7ms/step - loss: 1.0000\n",
            "Epoch 70/100\n",
            "1/1 [==============================] - 0s 8ms/step - loss: 1.0000\n",
            "Epoch 71/100\n",
            "1/1 [==============================] - 0s 8ms/step - loss: 1.0000\n",
            "Epoch 72/100\n",
            "1/1 [==============================] - 0s 7ms/step - loss: 1.0000\n",
            "Epoch 73/100\n",
            "1/1 [==============================] - 0s 8ms/step - loss: 1.0000\n",
            "Epoch 74/100\n",
            "1/1 [==============================] - 0s 7ms/step - loss: 1.0000\n",
            "Epoch 75/100\n",
            "1/1 [==============================] - 0s 8ms/step - loss: 1.0000\n",
            "Epoch 76/100\n",
            "1/1 [==============================] - 0s 8ms/step - loss: 1.0000\n",
            "Epoch 77/100\n",
            "1/1 [==============================] - 0s 8ms/step - loss: 1.0000\n",
            "Epoch 78/100\n",
            "1/1 [==============================] - 0s 7ms/step - loss: 1.0000\n",
            "Epoch 79/100\n",
            "1/1 [==============================] - 0s 13ms/step - loss: 1.0000\n",
            "Epoch 80/100\n",
            "1/1 [==============================] - 0s 8ms/step - loss: 1.0000\n",
            "Epoch 81/100\n",
            "1/1 [==============================] - 0s 8ms/step - loss: 1.0000\n",
            "Epoch 82/100\n",
            "1/1 [==============================] - 0s 6ms/step - loss: 1.0000\n",
            "Epoch 83/100\n",
            "1/1 [==============================] - 0s 10ms/step - loss: 1.0000\n",
            "Epoch 84/100\n",
            "1/1 [==============================] - 0s 12ms/step - loss: 1.0000\n",
            "Epoch 85/100\n",
            "1/1 [==============================] - 0s 11ms/step - loss: 1.0000\n",
            "Epoch 86/100\n",
            "1/1 [==============================] - 0s 10ms/step - loss: 1.0000\n",
            "Epoch 87/100\n",
            "1/1 [==============================] - 0s 11ms/step - loss: 1.0000\n",
            "Epoch 88/100\n",
            "1/1 [==============================] - 0s 10ms/step - loss: 1.0000\n",
            "Epoch 89/100\n",
            "1/1 [==============================] - 0s 10ms/step - loss: 1.0000\n",
            "Epoch 90/100\n",
            "1/1 [==============================] - 0s 11ms/step - loss: 1.0000\n",
            "Epoch 91/100\n",
            "1/1 [==============================] - 0s 9ms/step - loss: 1.0000\n",
            "Epoch 92/100\n",
            "1/1 [==============================] - 0s 8ms/step - loss: 1.0000\n",
            "Epoch 93/100\n",
            "1/1 [==============================] - 0s 7ms/step - loss: 1.0000\n",
            "Epoch 94/100\n",
            "1/1 [==============================] - 0s 9ms/step - loss: 1.0000\n",
            "Epoch 95/100\n",
            "1/1 [==============================] - 0s 8ms/step - loss: 1.0000\n",
            "Epoch 96/100\n",
            "1/1 [==============================] - 0s 7ms/step - loss: 1.0000\n",
            "Epoch 97/100\n",
            "1/1 [==============================] - 0s 7ms/step - loss: 1.0000\n",
            "Epoch 98/100\n",
            "1/1 [==============================] - 0s 7ms/step - loss: 1.0000\n",
            "Epoch 99/100\n",
            "1/1 [==============================] - 0s 7ms/step - loss: 1.0000\n",
            "Epoch 100/100\n",
            "1/1 [==============================] - 0s 6ms/step - loss: 1.0000\n",
            "1/1 [==============================] - 1s 553ms/step\n",
            "Predicted Final Results for 2024 (percentages):\n",
            "AK Dissanayake: 39.57%\n",
            "Sajith Premadasa: 32.12%\n",
            "Ranil Wickremesinghe: 21.36%\n",
            "other: 6.95%\n",
            "\n",
            "Second Preference Redistribution:\n",
            "AKD Final (after redistribution): 44.27%\n",
            "Sajith Final (after redistribution): 39.59%\n",
            "AKD wins after second preference votes.\n",
            "\n",
            "Final Vote Counts for 17.1 Million People:\n",
            "AKD Votes: 7569928\n",
            "Sajith Votes: 6770571\n"
          ]
        }
      ],
      "source": [
        "import numpy as np\n",
        "import pandas as pd\n",
        "from sklearn.preprocessing import StandardScaler\n",
        "from tensorflow.keras.models import Sequential\n",
        "from tensorflow.keras.layers import LSTM, Dense\n",
        "\n",
        "\n",
        "# Prepare the 2024 poll data (transpose to match time steps)\n",
        "polls_2024 = df_2024[['April_2024','May_2024', 'June_2024', 'July_2024', 'August_2024', 'September_2024']].values.T\n",
        "\n",
        "# Scaling the 2024 poll data\n",
        "scaler = StandardScaler()\n",
        "polls_2024_scaled = scaler.fit_transform(polls_2024)\n",
        "\n",
        "# Reshape the data to fit the LSTM model input format (samples, time steps, features)\n",
        "polls_2024_scaled = np.reshape(polls_2024_scaled, (1, polls_2024_scaled.shape[0], polls_2024_scaled.shape[1]))\n",
        "\n",
        "# Define a simple LSTM model\n",
        "model = Sequential()\n",
        "model.add(LSTM(50, return_sequences=False, input_shape=(polls_2024_scaled.shape[1], polls_2024_scaled.shape[2])))\n",
        "model.add(Dense(4))  # Output 4 values (one for each candidate)\n",
        "\n",
        "# Compile the model\n",
        "model.compile(optimizer='adam', loss='mean_squared_error')\n",
        "\n",
        "# Since we don't have final results, we're using the same polls for training and prediction (this is just an example)\n",
        "model.fit(polls_2024_scaled, polls_2024_scaled, epochs=100, batch_size=1, verbose=1)\n",
        "\n",
        "# Predict the final results for 2024 based on the polls\n",
        "predicted_final_2024_scaled = model.predict(polls_2024_scaled)\n",
        "\n",
        "# Rescale the predictions back to the original scale\n",
        "predicted_final_2024_rescaled = scaler.inverse_transform(predicted_final_2024_scaled)\n",
        "\n",
        "# Normalize the predictions so that they sum to 100%\n",
        "predicted_final_2024_sum = np.sum(predicted_final_2024_rescaled, axis=1, keepdims=True)\n",
        "predicted_final_2024_normalized = (predicted_final_2024_rescaled / predicted_final_2024_sum) * 100\n",
        "\n",
        "# Display the normalized final results for 2024\n",
        "print(\"Predicted Final Results for 2024 (percentages):\")\n",
        "for i, candidate in enumerate(df_2024['Candidate']):\n",
        "    print(f\"{candidate}: {predicted_final_2024_normalized[0][i]:.2f}%\")\n",
        "\n",
        "# ---- Second Preference Calculation ---- #\n",
        "# Define second preference redistribution\n",
        "second_preference = {\n",
        "    'AKD_from_Ranil': 0.22,\n",
        "    'Sajith_from_Ranil': 0.35,\n",
        "    'AKD_from_Sajith': 0.29,\n",
        "    'Ranil_from_Sajith': 0.32,\n",
        "    'Sajith_from_AKD': 0.09,\n",
        "    'Ranil_from_AKD': 0.11\n",
        "}\n",
        "\n",
        "# First-round results\n",
        "akd_first_round = predicted_final_2024_normalized[0][0]\n",
        "sajith_first_round = predicted_final_2024_normalized[0][1]\n",
        "ranil_first_round = predicted_final_2024_normalized[0][2]\n",
        "other_first_round = predicted_final_2024_normalized[0][3]\n",
        "\n",
        "# Check if a candidate won outright in the first round (>50%)\n",
        "if akd_first_round > 50 or sajith_first_round > 50:\n",
        "    print(\"First-round winner: No need for second preference votes.\")\n",
        "else:\n",
        "    # Assume Ranil is eliminated and his votes are redistributed\n",
        "    akd_final = akd_first_round + second_preference['AKD_from_Ranil'] * ranil_first_round\n",
        "    sajith_final = sajith_first_round + second_preference['Sajith_from_Ranil'] * ranil_first_round\n",
        "\n",
        "    print(\"\\nSecond Preference Redistribution:\")\n",
        "    print(f\"AKD Final (after redistribution): {akd_final:.2f}%\")\n",
        "    print(f\"Sajith Final (after redistribution): {sajith_final:.2f}%\")\n",
        "\n",
        "    # Determine final winner\n",
        "    if akd_final > sajith_final:\n",
        "        print(\"AKD wins after second preference votes.\")\n",
        "    else:\n",
        "        print(\"Sajith wins after second preference votes.\")\n",
        "\n",
        "# ---- Adjust Final Results for Population ---- #\n",
        "population_size = 17100000  # 17.1 million people\n",
        "\n",
        "# Convert percentages to absolute numbers based on the total population\n",
        "akd_final_votes = (akd_final / 100) * population_size\n",
        "sajith_final_votes = (sajith_final / 100) * population_size\n",
        "\n",
        "print(\"\\nFinal Vote Counts for 17.1 Million People:\")\n",
        "print(f\"AKD Votes: {akd_final_votes:.0f}\")\n",
        "print(f\"Sajith Votes: {sajith_final_votes:.0f}\")\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "id": "0b11609b",
      "metadata": {
        "id": "0b11609b"
      },
      "outputs": [],
      "source": []
    }
  ],
  "metadata": {
    "kernelspec": {
      "display_name": "Python 3 (ipykernel)",
      "language": "python",
      "name": "python3"
    },
    "language_info": {
      "codemirror_mode": {
        "name": "ipython",
        "version": 3
      },
      "file_extension": ".py",
      "mimetype": "text/x-python",
      "name": "python",
      "nbconvert_exporter": "python",
      "pygments_lexer": "ipython3",
      "version": "3.11.3"
    },
    "colab": {
      "provenance": [],
      "include_colab_link": true
    }
  },
  "nbformat": 4,
  "nbformat_minor": 5
}