import os from transformers import AutoModelForCausalLM, AutoTokenizer # Setze das Cache-Verzeichnis os.environ['TRANSFORMERS_CACHE'] = 'cache' model_name = "Monero/WizardLM-Uncensored-SuperCOT-StoryTelling-30b" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # Funktion zur Textgenerierung definieren def generate_text(prompt): inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(inputs["input_ids"], max_length=100) return tokenizer.decode(outputs[0], skip_special_tokens=True) import gradio as gr # Gradio-Interface erstellen iface = gr.Interface( fn=generate_text, inputs="text", outputs="text", title="WizardLM Uncensored SuperCOT StoryTelling" ) # Interface mit öffentlichem Link starten iface.launch(share=True)