import gradio as gr from transformers import pipeline # Laden des Modells für Masked Language Modeling unmasker = pipeline('fill-mask', model='bert-base-uncased') # Gradio Interface def masked_language_modeling(text): results = unmasker(text) return results[0]['sequence'] iface = gr.Interface( fn=masked_language_modeling, inputs=gr.Textbox(), outputs=gr.Textbox(), title='BERT Masked Language Modeling', description='Enter a sentence with a [MASK] and see the predictions.' ) # Starte die Gradio Benutzeroberfläche if __name__ == '__main__': iface.launch()