import gradio as gr | |
from transformers import pipeline | |
# Laden des Modells für Masked Language Modeling | |
unmasker = pipeline('fill-mask', model='bert-base-uncased') | |
# Gradio Interface | |
def masked_language_modeling(text): | |
results = unmasker(text) | |
return results[0]['sequence'] | |
iface = gr.Interface( | |
fn=masked_language_modeling, | |
inputs=gr.Textbox(), | |
outputs=gr.Textbox(), | |
title='BERT Masked Language Modeling', | |
description='Enter a sentence with a [MASK] and see the predictions.' | |
) | |
# Starte die Gradio Benutzeroberfläche | |
if __name__ == '__main__': | |
iface.launch() | |