Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,719 Bytes
b26801b 7a44f56 b26801b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
import time
from pathlib import Path
import shutil
import json
import argbind
import audiotools as at
from gradio_client import Client, handle_file
from pythonosc.osc_server import ThreadingOSCUDPServer
from pythonosc.udp_client import SimpleUDPClient
from pythonosc.dispatcher import Dispatcher
import torch
class Timer:
def __init__(self):
self.times = {}
def tick(self, name: str):
self.times[name] = time.time()
def tock(self, name: str):
toc = time.time() - self.times[name]
print(f"{name} took {toc} seconds")
return toc
def __str__(self):
return str(self.times)
timer = Timer()
DOWNLOADS_DIR = ".gradio"
def clear_file(file):
file = Path(file)
if file.exists():
file.unlink()
class OSCManager:
def __init__(
self,
ip: str,
s_port: str,
r_port: str,
process_fn: callable,
# param_change_callback: callable = None
):
self.ip = ip
self.s_port = s_port
self.r_port = r_port
# register the process_fn
self.process_fn = process_fn
print(f"will send to {ip}:{s_port}")
self.client = SimpleUDPClient(ip, s_port)
def start_server(self,):
dispatcher = Dispatcher()
dispatcher.map("/process", self.process_fn)
def send_heartbeat(_, *args):
# print("Received heartbeat")
self.client.send_message("/heartbeat", "pong")
dispatcher.map("/heartbeat", lambda a, *r: send_heartbeat(a, *r))
dispatcher.map("/cleanup", lambda a, *r: clear_file(r[0]))
dispatcher.set_default_handler(lambda a, *r: print(a, r))
server = ThreadingOSCUDPServer((self.ip, self.r_port), dispatcher)
print(f"Serving on {server.server_address}")
server.serve_forever()
def error(self, msg: str):
self.client.send_message("/error", msg)
def log(self, msg: str):
self.client.send_message("/log", msg)
class GradioOSCClient:
def __init__(self,
ip: str,
s_port: int, r_port: int,
vampnet_url: str = None, # url for vampnet
):
self.osc_manager = OSCManager(
ip=ip, s_port=s_port, r_port=r_port,
process_fn=self.process,
)
self.clients = {}
if vampnet_url is not None:
self.clients["vampnet"] = Client(src=vampnet_url, download_files=DOWNLOADS_DIR)
assert len(self.clients) > 0, "At least one client must be specified!"
self.batch_size = 2# TODO: automatically get batch size from client.
self.osc_manager.log("hello from gradio client!")
self.inf_idx = 0
def param_changed(self, param_name, new_value):
print(f"Parameter {param_name} changed to {new_value}")
def vampnet_process(self, address: str, *args):
client = self.clients["vampnet"]
# query id --- audiofile ---- model_choice --- periodic --- drop --- seed
query_id = args[0]
client_type = args[1]
audio_path = Path(args[2])
model_choice = args[3]
periodic_p = args[4]
dropout = args[5]
seed = args[6]
looplength_ms = args[7]
typical_filter = args[8]
typical_mass = args[9]
typical_min_tokens = args[10]
upper_codebook_mask = args[11]
onset_mask_width = args[12]
sampling_steps = args[13]
temperature = args[14]
top_p = args[15]
beat_mask_ms = args[16]
num_feedback_steps = args[17]
if not audio_path.exists():
print(f"File {audio_path} does not exist")
self.osc_manager.error(f"File {audio_path} does not exist")
return
sig = at.AudioSignal(audio_path)
sig.to_mono()
sig.sample_rate = 48000 # HOT PATCH (FIXME IN MAX: sample rate is being forced to 48k)
# grab the looplength only
# TODO: although I added this,
# the max patch is still configured to crop anything past the looplength off
# so we'll have to change that in order to make an effect.
end_sample = int((looplength_ms * sig.sample_rate) / 1000)
# grab the remainder of the waveform
num_cut_samples = sig.samples.shape[-1] - end_sample
cut_wav = sig.samples[..., -num_cut_samples:]
sig.samples = sig.samples[..., :end_sample]
# write the file back
sig.write(audio_path)
timer.tick("predict")
print(f"Processing {address} with args {args}")
# breakpoint()
job = client.submit(
input_audio=handle_file(audio_path),
sampletemp=temperature,
top_p=top_p,
periodic_p=periodic_p,
dropout=dropout,
stretch_factor=1,
onset_mask_width=onset_mask_width,
typical_filtering=bool(typical_filter),
typical_mass=typical_mass,
typical_min_tokens=typical_min_tokens,
seed=seed,
model_choice=model_choice,
n_mask_codebooks=upper_codebook_mask,
pitch_shift_amt=0,
sample_cutoff=1.0,
sampling_steps=sampling_steps,
beat_mask_ms=int(beat_mask_ms),
num_feedback_steps=num_feedback_steps,
api_name="/vamp_1"
)
while not job.done():
time.sleep(0.1)
self.osc_manager.client.send_message("/progress", [query_id, str(job.status().code)])
result = job.result()
# audio_file = result
# audio_files = [audio_file] * self.batch_size
audio_files = list(result[:self.batch_size])
# if each file is missing a .wav at the end, add it
first_audio = audio_files[0]
if not first_audio.endswith(".wav"):
for audio_file in set(audio_files):
if not audio_file.endswith(".wav"):
shutil.move(audio_file, f"{audio_file}.wav")
audio_file = f"{audio_file}.wav"
audio_files = [f"{audio}.wav" for audio in audio_files if not audio.endswith(".wav")]
for audio_file in audio_files:
# load the file, add the cut samples back
sig = at.AudioSignal(audio_file)
sig.resample(48000)
sig.samples = torch.cat([sig.samples, cut_wav], dim=-1)
sig.write(audio_file)
seed = result[-1]
timer.tock("predict")
# send a message that the process is done
self.osc_manager.log(f"query {query_id} has been processed")
self.osc_manager.client.send_message("/process-result", [query_id] + audio_files)
def process(self, address: str, *args):
query_id = args[0]
client_type = args[1]
audio_path = Path(args[2])
if client_type == "vampnet":
self.vampnet_process(address, *args)
return
elif client_type == "sketch2sound":
self.process_s2s(address, *args)
return
else:
raise ValueError(f"Unknown client type {client_type}")
def gradio_main(
vampnet_url: str = None
):
system = GradioOSCClient(
vampnet_url=vampnet_url,
ip="127.0.0.1", s_port=8003, r_port=8001,
)
system.osc_manager.start_server()
if __name__ == "__main__":
try:
gradio_main = argbind.bind(gradio_main, without_prefix=True)
args = argbind.parse_args()
with argbind.scope(args):
gradio_main()
except Exception as e:
import shutil
shutil.rmtree(DOWNLOADS_DIR, ignore_errors=True)
raise e |