Spaces:
Running
Running
File size: 22,885 Bytes
41b9d24 423d60f 41b9d24 f572dd0 21eac81 41b9d24 4ec7317 5d638b3 9c153c6 41b9d24 05d43c6 41b9d24 12dc48a 021d911 12dc48a 021d911 7a44f56 41b9d24 7a44f56 41b9d24 7a44f56 41b9d24 f23003e 41b9d24 f572dd0 05d43c6 cd84ee3 41b9d24 21eac81 41b9d24 7a44f56 41b9d24 12dc48a 41b9d24 cd84ee3 41b9d24 05d43c6 41b9d24 05d43c6 cd84ee3 12dc48a cd84ee3 12dc48a cd84ee3 7a44f56 cd84ee3 41b9d24 cd84ee3 7a44f56 05d43c6 cd84ee3 41b9d24 05d43c6 cd84ee3 05d43c6 cd84ee3 41b9d24 05d43c6 cd84ee3 41b9d24 7a44f56 f23003e 7a44f56 a19755d 7a44f56 41b9d24 a19755d cd84ee3 7a44f56 cd84ee3 7a44f56 12dc48a cd84ee3 41b9d24 a19755d 4afeab4 717e513 5062f67 717e513 f23003e 7a44f56 fc3559d 7a44f56 4afeab4 7a44f56 4afeab4 f23003e 7a44f56 423d60f f23003e 7a44f56 41b9d24 7a44f56 41b9d24 1b1b9de 41b9d24 7a44f56 41b9d24 12dc48a 41b9d24 7a44f56 41b9d24 7a44f56 9d98314 36ffa47 41b9d24 cd84ee3 41b9d24 cd84ee3 9d98314 cd84ee3 41b9d24 05d43c6 878b171 41b9d24 cd84ee3 41b9d24 7a44f56 41b9d24 7a44f56 41b9d24 cd84ee3 7a44f56 41b9d24 7a44f56 41b9d24 12dc48a 7a44f56 12dc48a cd84ee3 12dc48a cd84ee3 41b9d24 423d60f 4afeab4 423d60f 41b9d24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 |
import spaces
from pathlib import Path
import yaml
import time
import uuid
import numpy as np
import audiotools as at
import argbind
import shutil
import torch
from datetime import datetime
from pyharp import load_audio, save_audio, OutputLabel, LabelList, build_endpoint, ModelCard
import gradio as gr
from vampnet.interface import Interface, signal_concat
from vampnet import mask as pmask
device="cpu"
print(f"using device {device}\n"*10)
interface = Interface.default()
init_model_choice = open("DEFAULT_MODEL").read().strip()
# load the init model
interface.load_finetuned(init_model_choice)
def to_output(sig):
return sig.sample_rate, sig.cpu().detach().numpy()[0][0]
MAX_DURATION_S = 10
def load_audio(file):
print(file)
if isinstance(file, str):
filepath = file
elif isinstance(file, tuple):
# not a file
sr, samples = file
samples = samples / np.iinfo(samples.dtype).max
return sr, samples
else:
filepath = file.name
sig = at.AudioSignal.salient_excerpt(
filepath, duration=MAX_DURATION_S
)
sig = at.AudioSignal(filepath)
return to_output(sig)
def load_example_audio():
return load_audio("./assets/example.wav")
from torch_pitch_shift import pitch_shift, get_fast_shifts
def shift_pitch(signal, interval: int):
signal.samples = pitch_shift(
signal.samples,
shift=interval,
sample_rate=signal.sample_rate
)
return signal
def onsets(sig: at.AudioSignal, hop_length: int):
assert sig.batch_size == 1, "batch size must be 1"
assert sig.num_channels == 1, "mono signals only"
import librosa
onset_frame_idxs = librosa.onset.onset_detect(
y=sig.samples[0][0].detach().cpu().numpy(), sr=sig.sample_rate,
hop_length=hop_length,
backtrack=True,
)
return onset_frame_idxs
@spaces.GPU
def new_vampnet_mask(self,
codes,
onset_idxs,
width: int = 5,
periodic_prompt=2,
upper_codebook_mask=1,
drop_amt: float = 0.1
):
from vampnet.newmask import mask_and, mask_or, onset_mask, periodic_mask, drop_ones, codebook_mask
mask = mask_and(
periodic_mask(codes, periodic_prompt, 1, random_roll=False),
mask_or( # this re-masks the onsets, according to a periodic schedule
onset_mask(onset_idxs, codes, width=width),
periodic_mask(codes, periodic_prompt, 1, random_roll=False),
)
).int()
# make sure the onset idxs themselves are unmasked
# mask = 1 - mask
mask[:, :, onset_idxs] = 0
mask = mask.cpu() # debug
mask = 1-drop_ones(1-mask, drop_amt)
mask = codebook_mask(mask, upper_codebook_mask)
# save mask as txt (ints)
np.savetxt("scratch/rms_mask.txt", mask[0].cpu().numpy(), fmt='%d')
mask = mask.to(self.device)
return mask[:, :, :]
@spaces.GPU
def mask_preview(periodic_p, n_mask_codebooks, onset_mask_width, dropout):
# make a mask preview
codes = torch.zeros((1, 14, 80)).to(device)
mask = interface.build_mask(
codes,
periodic_prompt=periodic_p,
# onset_mask_width=onset_mask_width,
_dropout=dropout,
upper_codebook_mask=n_mask_codebooks,
)
# mask = mask.cpu().numpy()
import matplotlib.pyplot as plt
plt.clf()
interface.visualize_codes(mask)
plt.title("mask preview")
plt.savefig("scratch/mask-prev.png")
return "scratch/mask-prev.png"
@spaces.GPU
def _vamp_internal(
seed, input_audio, model_choice,
pitch_shift_amt, periodic_p,
n_mask_codebooks, onset_mask_width,
dropout, sampletemp, typical_filtering,
typical_mass, typical_min_tokens, top_p,
sample_cutoff, stretch_factor, sampling_steps, beat_mask_ms, num_feedback_steps, api=False, harp=False
):
if torch.cuda.is_available():
device = "cuda"
elif torch.backends.mps.is_available():
device = "mps"
else:
device = "cpu"
print("args!")
print(f"seed: {seed}")
print(f"input_audio: {input_audio}")
print(f"model_choice: {model_choice}")
print(f"pitch_shift_amt: {pitch_shift_amt}")
print(f"periodic_p: {periodic_p}")
print(f"n_mask_codebooks: {n_mask_codebooks}")
print(f"onset_mask_width: {onset_mask_width}")
print(f"dropout: {dropout}")
print(f"sampletemp: {sampletemp}")
print(f"typical_filtering: {typical_filtering}")
print(f"typical_mass: {typical_mass}")
print(f"typical_min_tokens: {typical_min_tokens}")
print(f"top_p: {top_p}")
print(f"sample_cutoff: {sample_cutoff}")
print(f"stretch_factor: {stretch_factor}")
print(f"sampling_steps: {sampling_steps}")
print(f"api: {api}")
print(f"beat_mask_ms: {beat_mask_ms}")
print(f"using device {interface.device}")
print(f"num feedback steps: {num_feedback_steps}")
t0 = time.time()
interface.to(device)
print(f"using device {interface.device}")
_seed = seed if seed > 0 else None
if _seed is None:
_seed = int(torch.randint(0, 2**32, (1,)).item())
at.util.seed(_seed)
if input_audio is None:
raise gr.Error("no input audio received!")
sr, input_audio = input_audio
input_audio = input_audio / np.iinfo(input_audio.dtype).max
sig = at.AudioSignal(input_audio, sr).to_mono()
loudness = sig.loudness()
sig = interface._preprocess(sig)
# reload the model if necessary
interface.load_finetuned(model_choice)
if pitch_shift_amt != 0:
sig = shift_pitch(sig, pitch_shift_amt)
codes = interface.encode(sig)
# mask = new_vampnet_mask(
# interface,
# codes,
# onset_idxs=onsets(sig, hop_length=interface.codec.hop_length),
# width=onset_mask_width,
# periodic_prompt=periodic_p,
# upper_codebook_mask=n_mask_codebooks,
# drop_amt=dropout
# ).long()
mask = interface.build_mask(
codes,
sig=sig,
periodic_prompt=periodic_p,
onset_mask_width=onset_mask_width,
_dropout=dropout,
upper_codebook_mask=n_mask_codebooks,
)
if beat_mask_ms > 0:
# bm = pmask.mask_or(
# pmask.periodic_mask(
# codes, periodic_p, random_roll=False
# ),
# )
mask = pmask.mask_and(
mask, interface.make_beat_mask(
sig, after_beat_s=beat_mask_ms/1000.,
)
)
mask = pmask.codebook_mask(mask, n_mask_codebooks)
np.savetxt("scratch/rms_mask.txt", mask[0].cpu().numpy(), fmt='%d')
interface.set_chunk_size(10.0)
# lord help me
if top_p is not None:
if top_p > 0:
pass
else:
top_p = None
codes, mask_z = interface.vamp(
codes, mask,
batch_size=2,
feedback_steps=num_feedback_steps,
_sampling_steps=sampling_steps,
time_stretch_factor=stretch_factor,
return_mask=True,
temperature=sampletemp,
typical_filtering=typical_filtering,
typical_mass=typical_mass,
typical_min_tokens=typical_min_tokens,
top_p=top_p,
seed=_seed,
sample_cutoff=sample_cutoff,
)
print(f"vamp took {time.time() - t0} seconds")
sig = interface.decode(codes)
sig = sig.normalize(loudness)
import matplotlib.pyplot as plt
plt.clf()
# plt.imshow(mask_z[0].cpu().numpy(), aspect='auto
interface.visualize_codes(mask)
plt.title("actual mask")
plt.savefig("scratch/mask.png")
plt.clf()
if harp:
return sig
if not api:
return to_output(sig[0]), to_output(sig[1]), "scratch/mask.png"
else:
return to_output(sig[0]), to_output(sig[1])
@spaces.GPU
def vamp(input_audio,
sampletemp,
top_p,
periodic_p,
dropout,
stretch_factor,
onset_mask_width,
typical_filtering,
typical_mass,
typical_min_tokens,
seed,
model_choice,
n_mask_codebooks,
pitch_shift_amt,
sample_cutoff,
sampling_steps,
beat_mask_ms,
num_feedback_steps):
return _vamp_internal(
seed=seed,
input_audio=input_audio,
model_choice=model_choice,
pitch_shift_amt=pitch_shift_amt,
periodic_p=periodic_p,
n_mask_codebooks=n_mask_codebooks,
onset_mask_width=onset_mask_width,
dropout=dropout,
sampletemp=sampletemp,
typical_filtering=typical_filtering,
typical_mass=typical_mass,
typical_min_tokens=typical_min_tokens,
top_p=top_p,
sample_cutoff=sample_cutoff,
stretch_factor=stretch_factor,
sampling_steps=sampling_steps,
beat_mask_ms=beat_mask_ms,
num_feedback_steps=num_feedback_steps,
api=False,
)
@spaces.GPU
def api_vamp(input_audio,
sampletemp, top_p,
periodic_p,
dropout,
stretch_factor,
onset_mask_width,
typical_filtering,
typical_mass,
typical_min_tokens,
seed,
model_choice,
n_mask_codebooks,
pitch_shift_amt,
sample_cutoff,
sampling_steps,
beat_mask_ms, num_feedback_steps):
return _vamp_internal(
seed=seed,
input_audio=input_audio,
model_choice=model_choice,
pitch_shift_amt=pitch_shift_amt,
periodic_p=periodic_p,
n_mask_codebooks=n_mask_codebooks,
onset_mask_width=onset_mask_width,
dropout=dropout,
sampletemp=sampletemp,
typical_filtering=typical_filtering,
typical_mass=typical_mass,
typical_min_tokens=typical_min_tokens,
top_p=top_p,
sample_cutoff=sample_cutoff,
stretch_factor=stretch_factor,
sampling_steps=sampling_steps,
beat_mask_ms=beat_mask_ms,
num_feedback_steps=num_feedback_steps,
api=True,
)
@spaces.GPU
def harp_vamp(input_audio, sampletemp, periodic_p, dropout, n_mask_codebooks, model_choice, stretch_factor):
sig = at.AudioSignal(input_audio).to_mono()
input_audio = sig.cpu().detach().numpy()[0][0]
input_audio = input_audio * np.iinfo(np.int16).max
input_audio = input_audio.astype(np.int16)
input_audio = input_audio.reshape(1, -1)
input_audio = (sig.sample_rate, input_audio)
sig = _vamp_internal(
seed=0,
input_audio=input_audio,
model_choice=model_choice,
pitch_shift_amt=0,
periodic_p=int(periodic_p),
n_mask_codebooks=int(n_mask_codebooks),
onset_mask_width=0,
dropout=dropout,
sampletemp=sampletemp,
typical_filtering=False,
typical_mass=0.15,
typical_min_tokens=1,
top_p=None,
sample_cutoff=1.0,
stretch_factor=stretch_factor,
sampling_steps=36,
beat_mask_ms=int(0),
num_feedback_steps=1,
api=False,
harp=True,
)
ll = LabelList()
ll.append(OutputLabel(label='short label', t=0.0, description='longer description'))
return save_audio(sig.detach().cpu()), ll
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
manual_audio_upload = gr.File(
label=f"upload some audio (will be randomly trimmed to max of 100s)",
file_types=["audio"]
)
load_example_audio_button = gr.Button("or load example audio")
input_audio = gr.Audio(
label="input audio",
interactive=False,
type="numpy",
)
# audio_mask = gr.Audio(
# label="audio mask (listen to this to hear the mask hints)",
# interactive=False,
# type="numpy",
# )
# connect widgets
load_example_audio_button.click(
fn=load_example_audio,
inputs=[],
outputs=[ input_audio]
)
manual_audio_upload.change(
fn=load_audio,
inputs=[manual_audio_upload],
outputs=[ input_audio]
)
# mask settings
with gr.Column():
with gr.Accordion("manual controls", open=True):
periodic_p = gr.Slider(
label="periodic prompt",
minimum=0,
maximum=13,
step=1,
value=7,
)
onset_mask_width = gr.Slider(
label="onset mask width (multiplies with the periodic mask, 1 step ~= 10milliseconds) does not affect mask preview",
minimum=0,
maximum=100,
step=1,
value=0, visible=True
)
beat_mask_ms = gr.Slider(
label="beat mask width (milliseconds) does not affect mask preview",
minimum=1,
maximum=200,
step=1,
value=0,
visible=True
)
n_mask_codebooks = gr.Slider(
label="compression prompt ",
value=3,
minimum=1,
maximum=14,
step=1,
)
dropout = gr.Slider(
label="mask dropout",
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.0
)
num_feedback_steps = gr.Slider(
label="feedback steps (token telephone) -- turn it up for better timbre/rhythm transfer quality, but it's slower!",
minimum=1,
maximum=8,
step=1,
value=1
)
preset_dropdown = gr.Dropdown(
label="preset",
choices=["timbre transfer", "small variation", "small variation (follow beat)", "medium variation", "medium variation (follow beat)", "large variation", "large variation (follow beat)", "unconditional"],
value="medium variation"
)
def change_preset(preset_dropdown):
if preset_dropdown == "timbre transfer":
periodic_p = 2
n_mask_codebooks = 1
onset_mask_width = 0
dropout = 0.0
beat_mask_ms = 0
elif preset_dropdown == "small variation":
periodic_p = 5
n_mask_codebooks = 4
onset_mask_width = 0
dropout = 0.0
beat_mask_ms = 0
elif preset_dropdown == "small variation (follow beat)":
periodic_p = 7
n_mask_codebooks = 4
onset_mask_width = 0
dropout = 0.0
beat_mask_ms = 50
elif preset_dropdown == "medium variation":
periodic_p = 7
n_mask_codebooks = 4
onset_mask_width = 0
dropout = 0.0
beat_mask_ms = 0
elif preset_dropdown == "medium variation (follow beat)":
periodic_p = 13
n_mask_codebooks = 4
onset_mask_width = 0
dropout = 0.0
beat_mask_ms = 50
elif preset_dropdown == "large variation":
periodic_p = 13
n_mask_codebooks = 4
onset_mask_width = 0
dropout = 0.2
beat_mask_ms = 0
elif preset_dropdown == "large variation (follow beat)":
periodic_p = 0
n_mask_codebooks = 4
onset_mask_width = 0
dropout = 0.0
beat_mask_ms=80
elif preset_dropdown == "unconditional":
periodic_p=0
n_mask_codebooks=1
onset_mask_width=0
dropout=0.0
return periodic_p, n_mask_codebooks, onset_mask_width, dropout, beat_mask_ms
preset_dropdown.change(
fn=change_preset,
inputs=[preset_dropdown],
outputs=[periodic_p, n_mask_codebooks, onset_mask_width, dropout, beat_mask_ms]
)
# preset_dropdown.change(
maskimg = gr.Image(
label="mask image",
interactive=False,
type="filepath"
)
with gr.Accordion("extras ", open=False):
pitch_shift_amt = gr.Slider(
label="pitch shift amount (semitones)",
minimum=-12,
maximum=12,
step=1,
value=0,
)
stretch_factor = gr.Slider(
label="time stretch factor",
minimum=0,
maximum=8,
step=1,
value=1,
)
with gr.Accordion("sampling settings", open=False):
sampletemp = gr.Slider(
label="sample temperature",
minimum=0.1,
maximum=10.0,
value=1.0,
step=0.001
)
top_p = gr.Slider(
label="top p (0.0 = off)",
minimum=0.0,
maximum=1.0,
value=0.0
)
typical_filtering = gr.Checkbox(
label="typical filtering ",
value=True
)
typical_mass = gr.Slider(
label="typical mass (should probably stay between 0.1 and 0.5)",
minimum=0.01,
maximum=0.99,
value=0.15
)
typical_min_tokens = gr.Slider(
label="typical min tokens (should probably stay between 1 and 256)",
minimum=1,
maximum=256,
step=1,
value=64
)
sample_cutoff = gr.Slider(
label="sample cutoff",
minimum=0.0,
maximum=0.9,
value=1.0,
step=0.01
)
sampling_steps = gr.Slider(
label="sampling steps",
minimum=1,
maximum=128,
step=1,
value=36
)
seed = gr.Number(
label="seed (0 for random)",
value=0,
precision=0,
)
# mask settings
with gr.Column():
model_choice = gr.Dropdown(
label="model choice",
choices=list(interface.available_models()),
value=init_model_choice,
visible=True
)
vamp_button = gr.Button("generate (vamp)!!!")
audio_outs = []
use_as_input_btns = []
for i in range(2):
with gr.Column():
audio_outs.append(gr.Audio(
label=f"output audio {i+1}",
interactive=False,
type="numpy"
))
use_as_input_btns.append(
gr.Button(f"use as input (feedback)")
)
thank_you = gr.Markdown("")
# download all the outputs
# download = gr.File(type="filepath", label="download outputs")
# mask preview change
for widget in (
periodic_p, n_mask_codebooks,
onset_mask_width, dropout
):
widget.change(
fn=mask_preview,
inputs=[periodic_p, n_mask_codebooks,
onset_mask_width, dropout],
outputs=[maskimg]
)
_inputs = [
input_audio,
sampletemp,
top_p,
periodic_p,
dropout,
stretch_factor,
onset_mask_width,
typical_filtering,
typical_mass,
typical_min_tokens,
seed,
model_choice,
n_mask_codebooks,
pitch_shift_amt,
sample_cutoff,
sampling_steps,
beat_mask_ms,
num_feedback_steps
]
# connect widgets
vamp_button.click(
fn=vamp,
inputs=_inputs,
outputs=[audio_outs[0], audio_outs[1], maskimg],
)
api_vamp_button = gr.Button("api vamp", visible=True)
api_vamp_button.click(
fn=api_vamp,
inputs=[input_audio,
sampletemp, top_p,
periodic_p,
dropout,
stretch_factor,
onset_mask_width,
typical_filtering,
typical_mass,
typical_min_tokens,
seed,
model_choice,
n_mask_codebooks,
pitch_shift_amt,
sample_cutoff,
sampling_steps,
beat_mask_ms,
num_feedback_steps
],
outputs=[audio_outs[0], audio_outs[1]],
api_name="vamp"
)
app = build_endpoint(
model_card=ModelCard(
name="vampnet",
description="generating audio by filling in the blanks.",
author="hugo flores garcía et al. (descript/northwestern)",
tags=["sound", "generation",],
midi_in=False,
midi_out=False,
),
components=[
sampletemp, periodic_p, dropout, n_mask_codebooks, model_choice, stretch_factor
],
process_fn=harp_vamp,
)
try:
demo.queue()
demo.launch(share=True)
except KeyboardInterrupt:
shutil.rmtree("gradio-outputs", ignore_errors=True)
raise |