File size: 5,505 Bytes
0cfb4a5 d4fba6d 0dec378 d4fba6d 0dec378 0a67e9a a484b84 d4fba6d 0dec378 d4fba6d 20ffdd2 0dec378 3c2650c 3d2ee8a ccd05c2 0cfb4a5 ccd05c2 d4fba6d 0cfb4a5 d4fba6d 0cfb4a5 d4fba6d 0cfb4a5 a484b84 1c144e4 d4fba6d 79024bb 6c31c17 1c144e4 6c31c17 ccd05c2 0a67e9a 79024bb d4fba6d 8f2fc8a ccd05c2 289d5f1 b5806de 0dec378 b206729 ccd05c2 0dec378 d4fba6d 0dec378 d4fba6d 0dec378 d4fba6d ccd05c2 d4fba6d ccd05c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
import os
import gradio as gr
import numpy as np
import random
from huggingface_hub import AsyncInferenceClient
from translatepy import Translator
import requests
import re
import asyncio
from PIL import Image
translator = Translator()
HF_TOKEN = os.environ.get("HF_TOKEN", None)
basemodel = "black-forest-labs/FLUX.1-schnell"
MAX_SEED = np.iinfo(np.int32).max
CSS = """
footer {
visibility: hidden;
}
"""
JS = """function () {
gradioURL = window.location.href
if (!gradioURL.endsWith('?__theme=dark')) {
window.location.replace(gradioURL + '?__theme=dark');
}
}"""
def enable_lora(lora_add):
if not lora_add:
return basemodel
else:
return lora_add
def get_upscale_finegrain(prompt, img_path, upscale_factor):
client = Client("finegrain/finegrain-image-enhancer")
result = client.predict(
input_image=handle_file(img_path),
prompt=prompt,
negative_prompt="",
seed=42,
upscale_factor=upscale_factor,
controlnet_scale=0.6,
controlnet_decay=1,
condition_scale=6,
tile_width=112,
tile_height=144,
denoise_strength=0.35,
num_inference_steps=18,
solver="DDIM",
api_name="/process"
)
return result[1]
async def generate_image(
prompt:str,
model:str,
lora_word:str,
width:int=768,
height:int=1024,
scales:float=3.5,
steps:int=24,
seed:int=-1
):
if seed == -1:
seed = random.randint(0, MAX_SEED)
seed = int(seed)
print(f'prompt:{prompt}')
text = str(translator.translate(prompt, 'English')) + "," + lora_word
client = AsyncInferenceClient()
try:
image = await client.text_to_image(
prompt=text,
height=height,
width=width,
guidance_scale=scales,
num_inference_steps=steps,
model=model,
)
except Exception as e:
raise gr.Error(f"Error in {e}")
return image, seed
async def gen(
prompt:str,
lora_add:str="",
lora_word:str="",
width:int=768,
height:int=1024,
scales:float=3.5,
steps:int=24,
seed:int=-1,
progress=gr.Progress(track_tqdm=True),
upscale_factor:int=0
):
model = enable_lora(lora_add)
print(model)
image, seed = await generate_image(prompt,model,lora_word,width,height,scales,steps,seed)
if upscale_factor != 0:
image = get_upscale_finegrain(prompt, image, upscale_factor)
return image, seed, image
def upscale_image(img_path, upscale_factor, prompt):
if upscale_factor == 0:
return img_path
else:
return get_upscale_finegrain(prompt, img_path, upscale_factor)
with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
gr.HTML("<h1><center>Flux Lab Light</center></h1>")
with gr.Row():
with gr.Column(scale=4):
with gr.Row():
img = gr.Image(type="filepath", label='Flux Generated Image', height=600)
with gr.Row():
prompt = gr.Textbox(label='Enter Your Prompt (Multi-Languages)', placeholder="Enter prompt...", scale=6)
sendBtn = gr.Button(scale=1, variant='primary')
with gr.Accordion("Advanced Options", open=True):
with gr.Column(scale=1):
width = gr.Slider(
label="Width",
minimum=512,
maximum=1280,
step=8,
value=768,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=1280,
step=8,
value=1024,
)
scales = gr.Slider(
label="Guidance",
minimum=3.5,
maximum=7,
step=0.1,
value=3.5,
)
steps = gr.Slider(
label="Steps",
minimum=1,
maximum=100,
step=1,
value=24,
)
seed = gr.Slider(
label="Seeds",
minimum=-1,
maximum=MAX_SEED,
step=1,
value=-1,
)
lora_add = gr.Textbox(
label="Add Flux LoRA",
info="Copy the HF LoRA model name here",
lines=1,
placeholder="Please use Warm status model",
)
lora_word = gr.Textbox(
label="Add Flux LoRA Trigger Word",
info="Add the Trigger Word",
lines=1,
value="",
)
upscale_factor = gr.Radio(
label="UpScale Factor",
choices=[
0,
2,
3,
4
],
value=0,
scale=2
)
output_res = gr.Image(label="Upscaled Image")
gr.on(
triggers=[
prompt.submit,
sendBtn.click,
],
fn=gen,
inputs=[
prompt,
lora_add,
lora_word,
width,
height,
scales,
steps,
seed,
upscale_factor
],
outputs=[img, seed, output_res]
)
if name == "main":
demo.queue(api_open=False).launch(show_api=False, share=False) |