File size: 5,505 Bytes
0cfb4a5
d4fba6d
0dec378
 
d4fba6d
0dec378
0a67e9a
 
a484b84
d4fba6d
0dec378
 
d4fba6d
20ffdd2
0dec378
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c2650c
 
 
 
 
3d2ee8a
ccd05c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cfb4a5
 
 
 
 
 
 
 
ccd05c2
 
d4fba6d
0cfb4a5
 
 
 
 
 
 
d4fba6d
0cfb4a5
d4fba6d
 
 
 
 
 
 
 
0cfb4a5
 
 
 
 
a484b84
1c144e4
d4fba6d
79024bb
6c31c17
 
1c144e4
6c31c17
 
ccd05c2
 
0a67e9a
79024bb
d4fba6d
8f2fc8a
ccd05c2
 
 
 
 
 
 
 
 
 
289d5f1
b5806de
0dec378
 
b206729
ccd05c2
0dec378
d4fba6d
0dec378
d4fba6d
0dec378
d4fba6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccd05c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4fba6d
ccd05c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import os
import gradio as gr
import numpy as np
import random
from huggingface_hub import AsyncInferenceClient
from translatepy import Translator
import requests
import re
import asyncio
from PIL import Image

translator = Translator()
HF_TOKEN = os.environ.get("HF_TOKEN", None)
basemodel = "black-forest-labs/FLUX.1-schnell"
MAX_SEED = np.iinfo(np.int32).max

CSS = """
footer {
    visibility: hidden;
}
"""

JS = """function () {
  gradioURL = window.location.href
  if (!gradioURL.endsWith('?__theme=dark')) {
    window.location.replace(gradioURL + '?__theme=dark');
  }
}"""

def enable_lora(lora_add):
    if not lora_add:
        return basemodel
    else:
        return lora_add

def get_upscale_finegrain(prompt, img_path, upscale_factor):
    client = Client("finegrain/finegrain-image-enhancer")
    result = client.predict(
        input_image=handle_file(img_path),
        prompt=prompt,
        negative_prompt="",
        seed=42,
        upscale_factor=upscale_factor,
        controlnet_scale=0.6,
        controlnet_decay=1,
        condition_scale=6,
        tile_width=112,
        tile_height=144,
        denoise_strength=0.35,
        num_inference_steps=18,
        solver="DDIM",
        api_name="/process"
    )
    return result[1]

async def generate_image(
    prompt:str,
    model:str,
    lora_word:str,
    width:int=768,
    height:int=1024,
    scales:float=3.5,
    steps:int=24,
    seed:int=-1
):

    if seed == -1:
        seed = random.randint(0, MAX_SEED)
    seed = int(seed)
    print(f'prompt:{prompt}')
    
    text = str(translator.translate(prompt, 'English')) + "," + lora_word

    client = AsyncInferenceClient()
    try:
        image = await client.text_to_image(
            prompt=text,
            height=height,
            width=width,
            guidance_scale=scales,
            num_inference_steps=steps,
            model=model,
        )
    except Exception as e:
        raise gr.Error(f"Error in {e}")
    
    return image, seed

async def gen(
    prompt:str,
    lora_add:str="",
    lora_word:str="",
    width:int=768,
    height:int=1024,
    scales:float=3.5,
    steps:int=24,
    seed:int=-1,
    progress=gr.Progress(track_tqdm=True),
    upscale_factor:int=0
):
    model = enable_lora(lora_add)
    print(model)
    image, seed = await generate_image(prompt,model,lora_word,width,height,scales,steps,seed)
    if upscale_factor != 0:
        image = get_upscale_finegrain(prompt, image, upscale_factor)
    return image, seed, image

def upscale_image(img_path, upscale_factor, prompt):
    if upscale_factor == 0:
        return img_path  
    else:
        return get_upscale_finegrain(prompt, img_path, upscale_factor)

with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
    gr.HTML("<h1><center>Flux Lab Light</center></h1>")
    with gr.Row():
        with gr.Column(scale=4):
            with gr.Row():
                img = gr.Image(type="filepath", label='Flux Generated Image', height=600)
            with gr.Row():
                prompt = gr.Textbox(label='Enter Your Prompt (Multi-Languages)', placeholder="Enter prompt...", scale=6)
                sendBtn = gr.Button(scale=1, variant='primary')
        with gr.Accordion("Advanced Options", open=True):
            with gr.Column(scale=1):
                width = gr.Slider(
                    label="Width",
                    minimum=512,
                    maximum=1280,
                    step=8,
                    value=768,
                )
                height = gr.Slider(
                    label="Height",
                    minimum=512,
                    maximum=1280,
                    step=8,
                    value=1024,
                )
                scales = gr.Slider(
                    label="Guidance",
                    minimum=3.5,
                    maximum=7,
                    step=0.1,
                    value=3.5,
                )
                steps = gr.Slider(
                    label="Steps",
                    minimum=1,
                    maximum=100,
                    step=1,
                    value=24,
                )
            seed = gr.Slider(
                label="Seeds",
                minimum=-1,
                maximum=MAX_SEED,
                step=1,
                value=-1,
            )
            lora_add = gr.Textbox(
                label="Add Flux LoRA",
                info="Copy the HF LoRA model name here",
                lines=1,
                placeholder="Please use Warm status model",
            )
            lora_word = gr.Textbox(
                label="Add Flux LoRA Trigger Word",
                info="Add the Trigger Word",
                lines=1,
                value="",
            )
            upscale_factor = gr.Radio(
                label="UpScale Factor",
                choices=[
                    0, 
                    2, 
                    3, 
                    4
                ],
                value=0,
                scale=2
            )
            output_res = gr.Image(label="Upscaled Image")

gr.on(
    triggers=[
        prompt.submit,
        sendBtn.click,
    ],
    fn=gen,
    inputs=[
        prompt,
        lora_add,
        lora_word,
        width, 
        height, 
        scales, 
        steps, 
        seed,
        upscale_factor
    ],
    outputs=[img, seed, output_res]
)

if name == "main":
demo.queue(api_open=False).launch(show_api=False, share=False)