Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -33,6 +33,26 @@ def enable_lora(lora_add):
|
|
| 33 |
else:
|
| 34 |
return lora_add
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
async def generate_image(
|
| 37 |
prompt:str,
|
| 38 |
model:str,
|
|
@@ -41,7 +61,8 @@ async def generate_image(
|
|
| 41 |
height:int=1024,
|
| 42 |
scales:float=3.5,
|
| 43 |
steps:int=24,
|
| 44 |
-
seed:int=-1
|
|
|
|
| 45 |
|
| 46 |
if seed == -1:
|
| 47 |
seed = random.randint(0, MAX_SEED)
|
|
@@ -74,19 +95,28 @@ async def gen(
|
|
| 74 |
scales:float=3.5,
|
| 75 |
steps:int=24,
|
| 76 |
seed:int=-1,
|
| 77 |
-
progress=gr.Progress(track_tqdm=True)
|
|
|
|
| 78 |
):
|
| 79 |
model = enable_lora(lora_add)
|
| 80 |
print(model)
|
| 81 |
image, seed = await generate_image(prompt,model,lora_word,width,height,scales,steps,seed)
|
| 82 |
-
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
|
| 85 |
gr.HTML("<h1><center>Flux Lab Light</center></h1>")
|
| 86 |
with gr.Row():
|
| 87 |
with gr.Column(scale=4):
|
| 88 |
with gr.Row():
|
| 89 |
-
img = gr.Image(type="filepath", label='
|
| 90 |
with gr.Row():
|
| 91 |
prompt = gr.Textbox(label='Enter Your Prompt (Multi-Languages)', placeholder="Enter prompt...", scale=6)
|
| 92 |
sendBtn = gr.Button(scale=1, variant='primary')
|
|
@@ -120,44 +150,57 @@ with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
|
|
| 120 |
step=1,
|
| 121 |
value=24,
|
| 122 |
)
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
|
|
|
|
|
| 33 |
else:
|
| 34 |
return lora_add
|
| 35 |
|
| 36 |
+
def get_upscale_finegrain(prompt, img_path, upscale_factor):
|
| 37 |
+
client = Client("finegrain/finegrain-image-enhancer")
|
| 38 |
+
result = client.predict(
|
| 39 |
+
input_image=handle_file(img_path),
|
| 40 |
+
prompt=prompt,
|
| 41 |
+
negative_prompt="",
|
| 42 |
+
seed=42,
|
| 43 |
+
upscale_factor=upscale_factor,
|
| 44 |
+
controlnet_scale=0.6,
|
| 45 |
+
controlnet_decay=1,
|
| 46 |
+
condition_scale=6,
|
| 47 |
+
tile_width=112,
|
| 48 |
+
tile_height=144,
|
| 49 |
+
denoise_strength=0.35,
|
| 50 |
+
num_inference_steps=18,
|
| 51 |
+
solver="DDIM",
|
| 52 |
+
api_name="/process"
|
| 53 |
+
)
|
| 54 |
+
return result[1]
|
| 55 |
+
|
| 56 |
async def generate_image(
|
| 57 |
prompt:str,
|
| 58 |
model:str,
|
|
|
|
| 61 |
height:int=1024,
|
| 62 |
scales:float=3.5,
|
| 63 |
steps:int=24,
|
| 64 |
+
seed:int=-1
|
| 65 |
+
):
|
| 66 |
|
| 67 |
if seed == -1:
|
| 68 |
seed = random.randint(0, MAX_SEED)
|
|
|
|
| 95 |
scales:float=3.5,
|
| 96 |
steps:int=24,
|
| 97 |
seed:int=-1,
|
| 98 |
+
progress=gr.Progress(track_tqdm=True),
|
| 99 |
+
upscale_factor:int=0
|
| 100 |
):
|
| 101 |
model = enable_lora(lora_add)
|
| 102 |
print(model)
|
| 103 |
image, seed = await generate_image(prompt,model,lora_word,width,height,scales,steps,seed)
|
| 104 |
+
if upscale_factor != 0:
|
| 105 |
+
image = get_upscale_finegrain(prompt, image, upscale_factor)
|
| 106 |
+
return image, seed, image
|
| 107 |
+
|
| 108 |
+
def upscale_image(img_path, upscale_factor, prompt):
|
| 109 |
+
if upscale_factor == 0:
|
| 110 |
+
return img_path
|
| 111 |
+
else:
|
| 112 |
+
return get_upscale_finegrain(prompt, img_path, upscale_factor)
|
| 113 |
+
|
| 114 |
with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
|
| 115 |
gr.HTML("<h1><center>Flux Lab Light</center></h1>")
|
| 116 |
with gr.Row():
|
| 117 |
with gr.Column(scale=4):
|
| 118 |
with gr.Row():
|
| 119 |
+
img = gr.Image(type="filepath", label='Flux Generated Image', height=600)
|
| 120 |
with gr.Row():
|
| 121 |
prompt = gr.Textbox(label='Enter Your Prompt (Multi-Languages)', placeholder="Enter prompt...", scale=6)
|
| 122 |
sendBtn = gr.Button(scale=1, variant='primary')
|
|
|
|
| 150 |
step=1,
|
| 151 |
value=24,
|
| 152 |
)
|
| 153 |
+
seed = gr.Slider(
|
| 154 |
+
label="Seeds",
|
| 155 |
+
minimum=-1,
|
| 156 |
+
maximum=MAX_SEED,
|
| 157 |
+
step=1,
|
| 158 |
+
value=-1,
|
| 159 |
+
)
|
| 160 |
+
lora_add = gr.Textbox(
|
| 161 |
+
label="Add Flux LoRA",
|
| 162 |
+
info="Copy the HF LoRA model name here",
|
| 163 |
+
lines=1,
|
| 164 |
+
placeholder="Please use Warm status model",
|
| 165 |
+
)
|
| 166 |
+
lora_word = gr.Textbox(
|
| 167 |
+
label="Add Flux LoRA Trigger Word",
|
| 168 |
+
info="Add the Trigger Word",
|
| 169 |
+
lines=1,
|
| 170 |
+
value="",
|
| 171 |
+
)
|
| 172 |
+
upscale_factor = gr.Radio(
|
| 173 |
+
label="UpScale Factor",
|
| 174 |
+
choices=[
|
| 175 |
+
0,
|
| 176 |
+
2,
|
| 177 |
+
3,
|
| 178 |
+
4
|
| 179 |
+
],
|
| 180 |
+
value=0,
|
| 181 |
+
scale=2
|
| 182 |
+
)
|
| 183 |
+
output_res = gr.Image(label="Upscaled Image")
|
| 184 |
|
| 185 |
+
gr.on(
|
| 186 |
+
triggers=[
|
| 187 |
+
prompt.submit,
|
| 188 |
+
sendBtn.click,
|
| 189 |
+
],
|
| 190 |
+
fn=gen,
|
| 191 |
+
inputs=[
|
| 192 |
+
prompt,
|
| 193 |
+
lora_add,
|
| 194 |
+
lora_word,
|
| 195 |
+
width,
|
| 196 |
+
height,
|
| 197 |
+
scales,
|
| 198 |
+
steps,
|
| 199 |
+
seed,
|
| 200 |
+
upscale_factor
|
| 201 |
+
],
|
| 202 |
+
outputs=[img, seed, output_res]
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
if name == "main":
|
| 206 |
+
demo.queue(api_open=False).launch(show_api=False, share=False)
|