File size: 2,132 Bytes
892f4c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import streamlit as st
import os
from langchain.chains import RetrievalQA, ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import TextLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.memory import ConversationBufferMemory
import re

# Initialize the Streamlit app
st.title('Document-Based Q&A System')

# API Key input securely
api_key = st.text_input("Enter your OpenAI API key:", type="password")
if api_key:
    os.environ["OPENAI_API_KEY"] = api_key
    st.success("API Key has been set!")

# File uploader
uploaded_file = st.file_uploader("Upload your document", type=['txt'])
if uploaded_file is not None:
    # Read and process the document
    text_data = uploaded_file.getvalue().decode("utf-8")
    text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
    data = text_splitter.split_documents(text_data)

    # Create vector store
    embeddings = OpenAIEmbeddings()
    vectorstore = FAISS.from_documents(data, embedding=embeddings)

    # Create conversation chain
    llm = ChatOpenAI(temperature=0.3, model_name="gpt-4-turbo")
    memory = ConversationBufferMemory(
        memory_key='chat_history', return_messages=True, output_key='answer')
    conversation_chain = ConversationalRetrievalChain.from_llm(
        llm=llm,
        chain_type="stuff",
        retriever=vectorstore.as_retriever(),
        memory=memory,
        return_source_documents=True
    )

    # Question input
    query = st.text_input("Ask a question about the document:")
    if query:
        result = conversation_chain({"question": query})
        answer = result["answer"]
        st.write("Answer:", answer)

        # Optionally display source text snippets
        if st.checkbox("Show source text snippets"):
            st.write("Source documents:")
            for i in result["source_documents"]:
                res = re.search(r'^[^\n]*', i.page_content)
                st.write(i.page_content[res.span()[0]:res.span()[1]])