hsuwill000 commited on
Commit
11e1178
·
verified ·
1 Parent(s): cbea327

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +138 -116
app.py CHANGED
@@ -1,73 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
-
5
- # import spaces #[uncomment to use ZeroGPU]
6
  from diffusers import DiffusionPipeline
 
7
  import torch
 
 
 
 
 
8
 
9
- device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
 
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
 
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
- pipe = pipe.to(device)
19
 
20
- MAX_SEED = np.iinfo(np.int32).max
21
- MAX_IMAGE_SIZE = 1024
 
 
 
22
 
23
 
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
- def infer(
26
- prompt,
27
- negative_prompt,
28
- seed,
29
- randomize_seed,
30
- width,
31
- height,
32
- guidance_scale,
33
- num_inference_steps,
34
- progress=gr.Progress(track_tqdm=True),
35
- ):
36
- if randomize_seed:
37
- seed = random.randint(0, MAX_SEED)
38
 
39
- generator = torch.Generator().manual_seed(seed)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
 
41
  image = pipe(
42
- prompt=prompt,
43
- negative_prompt=negative_prompt,
44
- guidance_scale=guidance_scale,
45
- num_inference_steps=num_inference_steps,
46
- width=width,
47
- height=height,
48
- generator=generator,
49
- ).images[0]
 
 
50
 
51
- return image, seed
52
 
53
 
54
  examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
 
58
  ]
59
 
60
- css = """
61
  #col-container {
62
  margin: 0 auto;
63
- max-width: 640px;
64
  }
65
  """
66
 
 
 
 
67
  with gr.Blocks(css=css) as demo:
 
68
  with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
70
-
 
 
 
71
  with gr.Row():
72
  prompt = gr.Text(
73
  label="Prompt",
@@ -75,80 +155,22 @@ with gr.Blocks(css=css) as demo:
75
  max_lines=1,
76
  placeholder="Enter your prompt",
77
  container=False,
78
- )
79
-
80
- run_button = gr.Button("Run", scale=0, variant="primary")
81
-
82
  result = gr.Image(label="Result", show_label=False)
83
 
84
- with gr.Accordion("Advanced Settings", open=False):
85
- negative_prompt = gr.Text(
86
- label="Negative prompt",
87
- max_lines=1,
88
- placeholder="Enter a negative prompt",
89
- visible=False,
90
- )
91
-
92
- seed = gr.Slider(
93
- label="Seed",
94
- minimum=0,
95
- maximum=MAX_SEED,
96
- step=1,
97
- value=0,
98
- )
99
-
100
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
-
102
- with gr.Row():
103
- width = gr.Slider(
104
- label="Width",
105
- minimum=256,
106
- maximum=MAX_IMAGE_SIZE,
107
- step=32,
108
- value=1024, # Replace with defaults that work for your model
109
- )
110
-
111
- height = gr.Slider(
112
- label="Height",
113
- minimum=256,
114
- maximum=MAX_IMAGE_SIZE,
115
- step=32,
116
- value=1024, # Replace with defaults that work for your model
117
- )
118
-
119
- with gr.Row():
120
- guidance_scale = gr.Slider(
121
- label="Guidance scale",
122
- minimum=0.0,
123
- maximum=10.0,
124
- step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
- )
127
-
128
- num_inference_steps = gr.Slider(
129
- label="Number of inference steps",
130
- minimum=1,
131
- maximum=50,
132
- step=1,
133
- value=2, # Replace with defaults that work for your model
134
- )
135
-
136
- gr.Examples(examples=examples, inputs=[prompt])
137
- gr.on(
138
- triggers=[run_button.click, prompt.submit],
139
- fn=infer,
140
- inputs=[
141
- prompt,
142
- negative_prompt,
143
- seed,
144
- randomize_seed,
145
- width,
146
- height,
147
- guidance_scale,
148
- num_inference_steps,
149
- ],
150
- outputs=[result, seed],
151
  )
152
 
153
- if __name__ == "__main__":
154
- demo.launch()
 
1
+ Hugging Face's logo
2
+ Hugging Face
3
+ Models
4
+ Datasets
5
+ Spaces
6
+ Posts
7
+ Docs
8
+ Enterprise
9
+ Pricing
10
+
11
+
12
+
13
+ Spaces:
14
+
15
+
16
+ hsuwill000
17
+ /
18
+ LCM_SoteMix_OpenVINO_CPU_Space_TAESD_0
19
+
20
+
21
+ like
22
+ 0
23
+
24
+ Logs
25
+ App
26
+ Files
27
+ Community
28
+ Settings
29
+ LCM_SoteMix_OpenVINO_CPU_Space_TAESD_0
30
+ /
31
+ app.py
32
+
33
+ hsuwill000's picture
34
+ hsuwill000
35
+ Update app.py
36
+ 075782c
37
+ verified
38
+ 2 months ago
39
+ raw
40
+
41
+ Copy download link
42
+ history
43
+ blame
44
+ edit
45
+ delete
46
+
47
+ 4.66 kB
48
  import gradio as gr
49
  import numpy as np
50
  import random
 
 
51
  from diffusers import DiffusionPipeline
52
+ from optimum.intel.openvino.modeling_diffusion import OVModelVaeDecoder, OVBaseModel, OVStableDiffusionPipeline
53
  import torch
54
+ from huggingface_hub import snapshot_download
55
+ import openvino.runtime as ov
56
+ from typing import Optional, Dict
57
+
58
+
59
 
60
+ model_id = "stabilityai/sdxl-turbo"
61
+ #model_id = "Disty0/sotediffusion-v2" #不可
62
 
63
+ #1024*512 記憶體不足
64
+ HIGH=512
65
+ WIDTH=512
 
66
 
67
+ batch_size = -1
 
68
 
69
+ class CustomOVModelVaeDecoder(OVModelVaeDecoder):
70
+ def __init__(
71
+ self, model: ov.Model, parent_model: OVBaseModel, ov_config: Optional[Dict[str, str]] = None, model_dir: str = None,
72
+ ):
73
+ super(OVModelVaeDecoder, self).__init__(model, parent_model, ov_config, "vae_decoder", model_dir)
74
 
75
 
76
+ pipe = OVStableDiffusionPipeline.from_pretrained(
77
+ model_id,
78
+ compile = False,
79
+ ov_config = {"CACHE_DIR":""},
80
+ torch_dtype=torch.int8, #快
81
+ #torch_dtype=torch.bfloat16, #中
82
+ #variant="fp16",
83
+ #torch_dtype=torch.IntTensor, #慢
84
+ use_safetensors=False,
85
+ )
 
 
 
 
86
 
87
+ taesd_dir = snapshot_download(repo_id="deinferno/taesd-openvino")
88
+
89
+ pipe.vae_decoder = CustomOVModelVaeDecoder(model = OVBaseModel.load_model(f"{taesd_dir}/vae_decoder/openvino_model.xml"),
90
+ parent_model = pipe,
91
+ model_dir = taesd_dir
92
+ )
93
+
94
+
95
+
96
+ pipe.reshape( batch_size=-1, height=HIGH, width=WIDTH, num_images_per_prompt=1)
97
+ #pipe.load_textual_inversion("./badhandv4.pt", "badhandv4")
98
+ #pipe.load_textual_inversion("./Konpeto.pt", "Konpeto")
99
+ #<shigure-ui-style>
100
+ #pipe.load_textual_inversion("sd-concepts-library/shigure-ui-style")
101
+ #pipe.load_textual_inversion("sd-concepts-library/ruan-jia")
102
+ #pipe.load_textual_inversion("sd-concepts-library/agm-style-nao")
103
+
104
+
105
+ pipe.compile()
106
+
107
+ prompt=""
108
+ negative_prompt="(worst quality, low quality, lowres, loli, kid, child), zombie, interlocked fingers, large breasts, username, watermark,"
109
+
110
+ def infer(prompt,negative_prompt):
111
 
112
  image = pipe(
113
+ prompt = prompt,
114
+ negative_prompt = negative_prompt,
115
+ width = WIDTH,
116
+ height = HIGH,
117
+ guidance_scale=1.0,
118
+ num_inference_steps=8,
119
+ num_images_per_prompt=1,
120
+ ).images[0]
121
+
122
+ return image
123
 
 
124
 
125
 
126
  examples = [
127
+ "(Digital art, highres, best quality, 8K, masterpiece, anime screencap, perfect eyes:1.4, ultra detailed:1.5),1girl,flat chest,short messy pink hair,blue eyes,tall,thick thighs,light blue hoodie,collar,light blue shirt,black sport shorts,bulge,black thigh highs,femboy,okoto no ko,smiling,blushing,looking at viewer,inside,livingroom,sitting on couch,nighttime,dark,hand_to_mouth,",
128
+ "1girl, silver hair, symbol-shaped pupils, yellow eyes, smiling, light particles, light rays, wallpaper, star guardian, serious face, red inner hair, power aura, grandmaster1, golden and white clothes",
129
+ "masterpiece, best quality, highres booru, 1girl, solo, depth of field, rim lighting, flowers, petals, from above, crystals, butterfly, vegetation, aura, magic, hatsune miku, blush, slight smile, close-up, against wall,",
130
+ "((colofrul:1.7)),((best quality)), ((masterpiece)), ((ultra-detailed)), (illustration), (detailed light), (an extremely delicate and beautiful),incredibly_absurdres,(glowing),(1girl:1.7),solo,a beautiful girl,(((cowboy shot))),standding,((Hosiery)),((beautiful off-shoulder lace-trimmed layered strapless dress+white stocking):1.25),((Belts)),(leg loops),((Hosiery)),((flower headdress)),((long white hair)),(((beautiful eyes))),BREAK,((english text)),(flower:1.35),(garden),(((border:1.75))),",
131
  ]
132
 
133
+ css="""
134
  #col-container {
135
  margin: 0 auto;
136
+ max-width: 520px;
137
  }
138
  """
139
 
140
+
141
+ power_device = "CPU"
142
+
143
  with gr.Blocks(css=css) as demo:
144
+
145
  with gr.Column(elem_id="col-container"):
146
+ gr.Markdown(f"""
147
+ # Disty0/LCM_SoteMix {WIDTH}x{HIGH}
148
+ Currently running on {power_device}.
149
+ """)
150
+
151
  with gr.Row():
152
  prompt = gr.Text(
153
  label="Prompt",
 
155
  max_lines=1,
156
  placeholder="Enter your prompt",
157
  container=False,
158
+ )
159
+ run_button = gr.Button("Run", scale=0)
160
+
 
161
  result = gr.Image(label="Result", show_label=False)
162
 
163
+ gr.Examples(
164
+ examples = examples,
165
+ fn = infer,
166
+ inputs = [prompt],
167
+ outputs = [result]
168
+ )
169
+
170
+ run_button.click(
171
+ fn = infer,
172
+ inputs = [prompt],
173
+ outputs = [result]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
174
  )
175
 
176
+ demo.queue().launch()