hsuwill000 commited on
Commit
4c1b360
·
verified ·
1 Parent(s): 73643bb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +224 -56
app.py CHANGED
@@ -1,28 +1,28 @@
1
- #MODEL_ID = "ibm-granite/granite-3.1-2b-instruct"
 
 
 
 
 
 
 
2
  MODEL_ID = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
3
  QUANT = "Q5_K_M"
4
 
5
- import subprocess
6
  def run_command(command, cwd=None):
7
- """运行系统命令"""
8
  result = subprocess.run(command, shell=True, cwd=cwd, text=True, capture_output=True)
9
  if result.returncode != 0:
10
- print(f"命令执行失败: {command}")
11
- print(f"错误信息: {result.stderr}")
12
  exit(result.returncode)
13
  else:
14
- print(f"命令执行成功: {command}")
15
  print(result.stdout)
16
 
17
- run_command('pip install llama-cpp-python')
18
-
19
- import gradio as gr
20
- import os
21
- from llama_cpp import Llama
22
- from huggingface_hub import snapshot_download
23
-
24
  def setup_llama_cpp():
25
- """克隆并编译llama.cpp仓库"""
26
  if not os.path.exists('llama.cpp'):
27
  run_command('git clone https://github.com/ggml-org/llama.cpp.git')
28
  os.chdir('llama.cpp')
@@ -32,7 +32,7 @@ def setup_llama_cpp():
32
  os.chdir('..')
33
 
34
  def setup_model(model_id):
35
- """下载并转换模型为GGUF格式,返回量化模型路径"""
36
  local_dir = model_id.split('/')[-1]
37
  if not os.path.exists(local_dir):
38
  snapshot_download(repo_id=model_id, local_dir=local_dir)
@@ -44,49 +44,217 @@ def setup_model(model_id):
44
  run_command(f'./llama.cpp/build/bin/llama-quantize ./{gguf_path} {quantized_path} {QUANT}')
45
  return quantized_path
46
 
47
- def chat_with_model(message, history, system_prompt, temperature, max_tokens, top_k, top_p):
48
- """调用Llama模型生成回复"""
49
- messages = [{"role": "system", "content": system_prompt}]
50
- for user_msg, assistant_msg in history:
51
- messages.append({"role": "user", "content": user_msg})
52
- messages.append({"role": "assistant", "content": assistant_msg})
53
- messages.append({"role": "user", "content": message})
54
- stream = llm.create_chat_completion(
55
- messages=messages,
56
- stream=True,
57
- temperature=temperature,
58
- top_k=top_k,
59
- top_p=top_p,
60
- max_tokens=max_tokens,
61
- stop=["<|im_end|>"]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
  )
63
- response = ""
64
- for chunk in stream:
65
- if "choices" in chunk and chunk["choices"]:
66
- text = chunk["choices"][0].get("delta", {}).get("content", "")
67
- response += text
68
- yield response
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69
 
70
  if __name__ == "__main__":
 
 
71
  setup_llama_cpp()
72
  MODEL_PATH = setup_model(MODEL_ID)
73
- llm = Llama(
74
- model_path=MODEL_PATH,
75
- verbose=False,
76
- n_threads=4,
77
- n_ctx=32768,
78
- eos_token_id=151643, # 设置正确的 EOS token ID,确保模型能正确结束
79
- )
80
- gr.ChatInterface(
81
- fn=chat_with_model,
82
- title="Llama GGUF Chatbot",
83
- description="使用Llama GGUF量化模型进行推理",
84
- additional_inputs_accordion=gr.Accordion(label="⚙️ 参数设置", open=False),
85
- additional_inputs=[
86
- gr.Textbox("You are a helpful assistant.", label="System Prompt"),
87
- gr.Slider(0, 1, 0.6, label="Temperature"),
88
- gr.Slider(100, 4096, 1000, label="Max Tokens"),
89
- gr.Slider(1, 100, 40, label="Top K"),
90
- gr.Slider(0, 1, 0.85, label="Top P"),
91
- ],
92
- ).queue().launch()
 
1
+ import time
2
+ import gradio as gr
3
+ from openai import OpenAI
4
+ import os
5
+ import subprocess
6
+ from huggingface_hub import snapshot_download
7
+
8
+ # Model configuration
9
  MODEL_ID = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
10
  QUANT = "Q5_K_M"
11
 
12
+ # Utility functions
13
  def run_command(command, cwd=None):
14
+ """Run a system command."""
15
  result = subprocess.run(command, shell=True, cwd=cwd, text=True, capture_output=True)
16
  if result.returncode != 0:
17
+ print(f"Command failed: {command}")
18
+ print(f"Error: {result.stderr}")
19
  exit(result.returncode)
20
  else:
21
+ print(f"Command succeeded: {command}")
22
  print(result.stdout)
23
 
 
 
 
 
 
 
 
24
  def setup_llama_cpp():
25
+ """Clone and compile llama.cpp repository."""
26
  if not os.path.exists('llama.cpp'):
27
  run_command('git clone https://github.com/ggml-org/llama.cpp.git')
28
  os.chdir('llama.cpp')
 
32
  os.chdir('..')
33
 
34
  def setup_model(model_id):
35
+ """Download and convert model to GGUF format, return quantized model path."""
36
  local_dir = model_id.split('/')[-1]
37
  if not os.path.exists(local_dir):
38
  snapshot_download(repo_id=model_id, local_dir=local_dir)
 
44
  run_command(f'./llama.cpp/build/bin/llama-quantize ./{gguf_path} {quantized_path} {QUANT}')
45
  return quantized_path
46
 
47
+ def start_llama_server(model_path):
48
+ """Start llama-server in the background."""
49
+ cmd = f'./llama.cpp/build/bin/llama-server --host 0.0.0.0 --port 8080 --model {model_path} --ctx-size 32768'
50
+ process = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
51
+ # Give the server a moment to start
52
+ time.sleep(5)
53
+ return process
54
+
55
+ # GUI-specific utilities (unchanged from your original)
56
+ def format_time(seconds_float):
57
+ total_seconds = int(round(seconds_float))
58
+ hours = total_seconds // 3600
59
+ remaining_seconds = total_seconds % 3600
60
+ minutes = remaining_seconds // 60
61
+ seconds = remaining_seconds % 60
62
+ if hours > 0:
63
+ return f"{hours}h {minutes}m {seconds}s"
64
+ elif minutes > 0:
65
+ return f"{minutes}m {seconds}s"
66
+ else:
67
+ return f"{seconds}s"
68
+
69
+ DESCRIPTION = '''
70
+ # Duplicate the space for free private inference.
71
+ ## DeepSeek-R1 Distill Qwen-1.5B Demo
72
+ A reasoning model trained using RL (Reinforcement Learning) that demonstrates structured reasoning capabilities.
73
+ '''
74
+
75
+ CSS = """
76
+ .spinner { animation: spin 1s linear infinite; display: inline-block; margin-right: 8px; }
77
+ @keyframes spin { from { transform: rotate(0deg); } to { transform: rotate(360deg); } }
78
+ .thinking-summary { cursor: pointer; padding: 8px; background: #f5f5f5; border-radius: 4px; margin: 4px 0; }
79
+ .thought-content { padding: 10px; background: #f8f9fa; border-radius: 4px; margin: 5px 0; }
80
+ .thinking-container { border-left: 3px solid #facc15; padding-left: 10px; margin: 8px 0; background: #210c29; }
81
+ details:not([open]) .thinking-container { border-left-color: #290c15; }
82
+ details { border: 1px solid #e0e0e0 !important; border-radius: 8px !important; padding: 12px !important; margin: 8px 0 !important; transition: border-color 0.2s; }
83
+ """
84
+
85
+ client = OpenAI(base_url="http://localhost:8080/v1", api_key="no-key-required")
86
+
87
+ def user(message, history):
88
+ return "", history + [[message, None]]
89
+
90
+ class ParserState:
91
+ __slots__ = ['answer', 'thought', 'in_think', 'start_time', 'last_pos', 'total_think_time']
92
+ def __init__(self):
93
+ self.answer = ""
94
+ self.thought = ""
95
+ self.in_think = False
96
+ self.start_time = 0
97
+ self.last_pos = 0
98
+ self.total_think_time = 0.0
99
+
100
+ def parse_response(text, state):
101
+ buffer = text[state.last_pos:]
102
+ state.last_pos = len(text)
103
+ while buffer:
104
+ if not state.in_think:
105
+ think_start = buffer.find('<think>')
106
+ if think_start != -1:
107
+ state.answer += buffer[:think_start]
108
+ state.in_think = True
109
+ state.start_time = time.perf_counter()
110
+ buffer = buffer[think_start + 7:]
111
+ else:
112
+ state.answer += buffer
113
+ break
114
+ else:
115
+ think_end = buffer.find('</think>')
116
+ if think_end != -1:
117
+ state.thought += buffer[:think_end]
118
+ duration = time.perf_counter() - state.start_time
119
+ state.total_think_time += duration
120
+ state.in_think = False
121
+ buffer = buffer[think_end + 8:]
122
+ else:
123
+ state.thought += buffer
124
+ break
125
+ elapsed = time.perf_counter() - state.start_time if state.in_think else 0
126
+ return state, elapsed
127
+
128
+ def format_response(state, elapsed):
129
+ answer_part = state.answer.replace('<think>', '').replace('</think>', '')
130
+ collapsible = []
131
+ collapsed = "<details open>"
132
+ if state.thought or state.in_think:
133
+ if state.in_think:
134
+ total_elapsed = state.total_think_time + elapsed
135
+ formatted_time = format_time(total_elapsed)
136
+ status = f"🌀 Thinking for {formatted_time}"
137
+ else:
138
+ formatted_time = format_time(state.total_think_time)
139
+ status = f"✅ Thought for {formatted_time}"
140
+ collapsed = "<details>"
141
+ collapsible.append(
142
+ f"{collapsed}<summary>{status}</summary>\n\n<div class='thinking-container'>\n{state.thought}\n</div>\n</details>"
143
+ )
144
+ return collapsible, answer_part
145
+
146
+ def generate_response(history, temperature, top_p, max_tokens, active_gen):
147
+ messages = [
148
+ {"role": "system", "content": "You are a helpful assistant."},
149
+ *[{"role": "user" if i % 2 == 0 else "assistant", "content": msg or ""}
150
+ for i, (user_msg, assistant_msg) in enumerate(history[:-1])],
151
+ {"role": "user", "content": history[-1][0]}
152
+ ]
153
+ full_response = ""
154
+ state = ParserState()
155
+ try:
156
+ stream = client.chat.completions.create(
157
+ model="", # Model name not needed with llama-server
158
+ messages=messages,
159
+ temperature=temperature,
160
+ top_p=top_p,
161
+ max_tokens=max_tokens,
162
+ stream=True
163
+ )
164
+ for chunk in stream:
165
+ if not active_gen[0]:
166
+ break
167
+ if chunk.choices[0].delta.content:
168
+ full_response += chunk.choices[0].delta.content
169
+ state, elapsed = parse_response(full_response, state)
170
+ collapsible, answer_part = format_response(state, elapsed)
171
+ history[-1][1] = "\n\n".join(collapsible + [answer_part])
172
+ yield history
173
+ state, elapsed = parse_response(full_response, state)
174
+ collapsible, answer_part = format_response(state, elapsed)
175
+ history[-1][1] = "\n\n".join(collapsible + [answer_part])
176
+ yield history
177
+ except Exception as e:
178
+ history[-1][1] = f"Error: {str(e)}"
179
+ yield history
180
+ finally:
181
+ active_gen[0] = False
182
+
183
+ # GUI setup
184
+ with gr.Blocks(css=CSS) as demo:
185
+ gr.Markdown(DESCRIPTION)
186
+ active_gen = gr.State([False])
187
+
188
+ chatbot = gr.Chatbot(
189
+ elem_id="chatbot",
190
+ height=500,
191
+ show_label=False,
192
+ render_markdown=True
193
  )
194
+
195
+ with gr.Row():
196
+ msg = gr.Textbox(
197
+ label="Message",
198
+ placeholder="Type your message...",
199
+ container=False,
200
+ scale=4
201
+ )
202
+ submit_btn = gr.Button("Send", variant='primary', scale=1)
203
+
204
+ with gr.Column(scale=2):
205
+ with gr.Row():
206
+ clear_btn = gr.Button("Clear", variant='secondary')
207
+ stop_btn = gr.Button("Stop", variant='stop')
208
+
209
+ with gr.Accordion("Parameters", open=False):
210
+ temperature = gr.Slider(minimum=0.1, maximum=1.5, value=0.6, label="Temperature")
211
+ top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, label="Top-p")
212
+ max_tokens = gr.Slider(minimum=2048, maximum=32768, value=4096, step=64, label="Max Tokens")
213
+
214
+ gr.Examples(
215
+ examples=[
216
+ ["How many r's are in the word strawberry?"],
217
+ ["Write 10 funny sentences that end in a fruit!"],
218
+ ["Let’s play word chains! I’ll start: PIZZA. Your turn! Next word must start with… A!"]
219
+ ],
220
+ inputs=msg,
221
+ label="Example Prompts"
222
+ )
223
+
224
+ submit_event = submit_btn.click(
225
+ user, [msg, chatbot], [msg, chatbot], queue=False
226
+ ).then(
227
+ lambda: [True], outputs=active_gen
228
+ ).then(
229
+ generate_response, [chatbot, temperature, top_p, max_tokens, active_gen], chatbot
230
+ )
231
+
232
+ msg.submit(
233
+ user, [msg, chatbot], [msg, chatbot], queue=False
234
+ ).then(
235
+ lambda: [True], outputs=active_gen
236
+ ).then(
237
+ generate_response, [chatbot, temperature, top_p, max_tokens, active_gen], chatbot
238
+ )
239
+
240
+ stop_btn.click(
241
+ lambda: [False], None, active_gen, cancels=[submit_event]
242
+ )
243
+
244
+ clear_btn.click(lambda: None, None, chatbot, queue=False)
245
 
246
  if __name__ == "__main__":
247
+ # Install dependencies
248
+ run_command('pip install llama-cpp-python openai')
249
  setup_llama_cpp()
250
  MODEL_PATH = setup_model(MODEL_ID)
251
+
252
+ # Start llama-server
253
+ server_process = start_llama_server(MODEL_PATH)
254
+ try:
255
+ # Launch GUI
256
+ demo.launch(server_name="0.0.0.0", server_port=7860)
257
+ finally:
258
+ # Cleanup: terminate the server process when the GUI is closed
259
+ server_process.terminate()
260
+ server_process.wait()