Spaces:
Paused
Paused
| import subprocess | |
| import time | |
| import os | |
| import gradio as gr | |
| from openai import OpenAI | |
| from huggingface_hub import snapshot_download | |
| # Utility functions | |
| def run_command(command, cwd=None): | |
| """Run a system command.""" | |
| result = subprocess.run(command, shell=True, cwd=cwd, text=True, capture_output=True) | |
| if result.returncode != 0: | |
| print(f"Command failed: {command}") | |
| print(f"Error: {result.stderr}") | |
| exit(result.returncode) | |
| else: | |
| print(f"Command succeeded: {command}") | |
| print(result.stdout) | |
| # Model configuration | |
| MODEL_ID = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B" | |
| QUANT = "Q5_K_M" | |
| def setup_llama_cpp(): | |
| """Clone and compile llama.cpp repository.""" | |
| if not os.path.exists('llama.cpp'): | |
| run_command('git clone https://github.com/ggml-org/llama.cpp.git') | |
| os.chdir('llama.cpp') | |
| run_command('pip install -r requirements.txt') | |
| run_command('cmake -B build') | |
| run_command('cmake --build build --config Release -j 8') | |
| os.chdir('..') | |
| def setup_model(model_id): | |
| """Download and convert model to GGUF format, return quantized model path.""" | |
| local_dir = model_id.split('/')[-1] | |
| if not os.path.exists(local_dir): | |
| snapshot_download(repo_id=model_id, local_dir=local_dir) | |
| gguf_path = f"{local_dir}.gguf" | |
| if not os.path.exists(gguf_path): | |
| run_command(f'python llama.cpp/convert_hf_to_gguf.py ./{local_dir} --outfile {gguf_path}') | |
| quantized_path = f"{local_dir}-{QUANT}.gguf" | |
| if not os.path.exists(quantized_path): | |
| run_command(f'./llama.cpp/build/bin/llama-quantize ./{gguf_path} {quantized_path} {QUANT}') | |
| return quantized_path | |
| def start_llama_server(model_path): | |
| """Start llama-server in the background.""" | |
| cmd = f'./llama.cpp/build/bin/llama-server --host 0.0.0.0 --port 8080 --model {model_path} --ctx-size 32768' | |
| process = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) | |
| # Give the server a moment to start | |
| time.sleep(5) | |
| return process | |
| # GUI-specific utilities | |
| def format_time(seconds_float): | |
| total_seconds = int(round(seconds_float)) | |
| hours = total_seconds // 3600 | |
| remaining_seconds = total_seconds % 3600 | |
| minutes = remaining_seconds // 60 | |
| seconds = remaining_seconds % 60 | |
| if hours > 0: | |
| return f"{hours}h {minutes}m {seconds}s" | |
| elif minutes > 0: | |
| return f"{minutes}m {seconds}s" | |
| else: | |
| return f"{seconds}s" | |
| DESCRIPTION = ''' | |
| # Duplicate the space for free private inference. | |
| ## DeepSeek-R1 Distill Qwen-1.5B Demo | |
| A reasoning model trained using RL (Reinforcement Learning) that demonstrates structured reasoning capabilities. | |
| ''' | |
| CSS = """ | |
| .spinner { animation: spin 1s linear infinite; display: inline-block; margin-right: 8px; } | |
| @keyframes spin { from { transform: rotate(0deg); } to { transform: rotate(360deg); } } | |
| .thinking-summary { cursor: pointer; padding: 8px; background: #f5f5f5; border-radius: 4px; margin: 4px 0; } | |
| .thought-content { padding: 10px; background: #f8f9fa; border-radius: 4px; margin: 5px 0; } | |
| .thinking-container { border-left: 3px solid #facc15; padding-left: 10px; margin: 8px 0; background: #210c29; } | |
| details:not([open]) .thinking-container { border-left-color: #290c15; } | |
| details { border: 1px solid #e0e0e0 !important; border-radius: 8px !important; padding: 12px !important; margin: 8px 0 !important; transition: border-color 0.2s; } | |
| """ | |
| client = OpenAI(base_url="http://localhost:8080/v1", api_key="no-key-required") | |
| # Update the user() function to use dictionary format | |
| def user(message, history): | |
| if not isinstance(message, str): | |
| message = str(message) | |
| history = history if history is not None else [] | |
| # Append the user message as a dict | |
| history.append({"role": "user", "content": message}) | |
| return "", history | |
| class ParserState: | |
| __slots__ = ['answer', 'thought', 'in_think', 'start_time', 'last_pos', 'total_think_time'] | |
| def __init__(self): | |
| self.answer = "" | |
| self.thought = "" | |
| self.in_think = False | |
| self.start_time = 0 | |
| self.last_pos = 0 | |
| self.total_think_time = 0.0 | |
| def parse_response(text, state): | |
| buffer = text[state.last_pos:] | |
| state.last_pos = len(text) | |
| while buffer: | |
| if not state.in_think: | |
| think_start = buffer.find('<think>') | |
| if think_start != -1: | |
| state.answer += buffer[:think_start] | |
| state.in_think = True | |
| state.start_time = time.perf_counter() | |
| buffer = buffer[think_start + 7:] | |
| else: | |
| state.answer += buffer | |
| break | |
| else: | |
| think_end = buffer.find('</think>') | |
| if think_end != -1: | |
| state.thought += buffer[:think_end] | |
| duration = time.perf_counter() - state.start_time | |
| state.total_think_time += duration | |
| state.in_think = False | |
| buffer = buffer[think_end + 8:] | |
| else: | |
| state.thought += buffer | |
| break | |
| elapsed = time.perf_counter() - state.start_time if state.in_think else 0 | |
| return state, elapsed | |
| def format_response(state, elapsed): | |
| answer_part = state.answer.replace('<think>', '').replace('</think>', '') | |
| collapsible = [] | |
| collapsed = "<details open>" | |
| if state.thought or state.in_think: | |
| if state.in_think: | |
| total_elapsed = state.total_think_time + elapsed | |
| formatted_time = format_time(total_elapsed) | |
| status = f"🌀 Thinking for {formatted_time}" | |
| else: | |
| formatted_time = format_time(state.total_think_time) | |
| status = f"✅ Thought for {formatted_time}" | |
| collapsed = "<details>" | |
| collapsible.append( | |
| f"{collapsed}<summary>{status}</summary>\n\n<div class='thinking-container'>\n{state.thought}\n</div>\n</details>" | |
| ) | |
| return collapsible, answer_part | |
| # Modified generate_response() using dictionary-format history | |
| def generate_response(history, temperature, top_p, max_tokens, active_gen): | |
| # Guard against empty history. | |
| if not history: | |
| yield [] | |
| return | |
| # Build messages: system message + conversation history. | |
| messages = [{"role": "system", "content": "You are a helpful assistant."}] + history | |
| full_response = "" | |
| state = ParserState() | |
| try: | |
| stream = client.chat.completions.create( | |
| model="", # Model name not needed with llama-server | |
| messages=messages, | |
| temperature=temperature, | |
| top_p=top_p, | |
| max_tokens=max_tokens, | |
| stream=True | |
| ) | |
| for chunk in stream: | |
| if not active_gen[0]: | |
| break | |
| if chunk.choices[0].delta.content: | |
| full_response += chunk.choices[0].delta.content | |
| state, elapsed = parse_response(full_response, state) | |
| collapsible, answer_part = format_response(state, elapsed) | |
| # Update or add the assistant reply in history | |
| if history and history[-1].get("role") == "assistant": | |
| history[-1]["content"] = "\n\n".join(collapsible + [answer_part]) | |
| else: | |
| history.append({"role": "assistant", "content": "\n\n".join(collapsible + [answer_part])}) | |
| yield history | |
| state, elapsed = parse_response(full_response, state) | |
| collapsible, answer_part = format_response(state, elapsed) | |
| if history and history[-1].get("role") == "assistant": | |
| history[-1]["content"] = "\n\n".join(collapsible + [answer_part]) | |
| else: | |
| history.append({"role": "assistant", "content": "\n\n".join(collapsible + [answer_part])}) | |
| yield history | |
| except Exception as e: | |
| if history and history[-1].get("role") == "assistant": | |
| history[-1]["content"] = f"Error: {str(e)}" | |
| else: | |
| history.append({"role": "assistant", "content": f"Error: {str(e)}"}) | |
| yield history | |
| finally: | |
| active_gen[0] = False | |
| # GUI setup | |
| with gr.Blocks(css=CSS) as demo: | |
| gr.Markdown(DESCRIPTION) | |
| active_gen = gr.State([False]) | |
| chatbot = gr.Chatbot( | |
| elem_id="chatbot", | |
| height=500, | |
| show_label=False, | |
| render_markdown=True, | |
| value=[], # initial value as an empty list | |
| type="messages" # use messages format (dict with role and content) | |
| ) | |
| with gr.Row(): | |
| msg = gr.Textbox( | |
| label="Message", | |
| placeholder="Type your message...", | |
| container=False, | |
| scale=4 | |
| ) | |
| submit_btn = gr.Button("Send", variant='primary', scale=1) | |
| with gr.Column(scale=2): | |
| with gr.Row(): | |
| clear_btn = gr.Button("Clear", variant='secondary') | |
| stop_btn = gr.Button("Stop", variant='stop') | |
| with gr.Accordion("Parameters", open=False): | |
| temperature = gr.Slider(minimum=0.1, maximum=1.5, value=0.6, label="Temperature") | |
| top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, label="Top-p") | |
| max_tokens = gr.Slider(minimum=2048, maximum=32768, value=4096, step=64, label="Max Tokens") | |
| gr.Examples( | |
| examples=[ | |
| ["How many r's are in the word strawberry?"], | |
| ["Write 10 funny sentences that end in a fruit!"], | |
| ["Let’s play word chains! I’ll start: PIZZA. Your turn! Next word must start with… A!"] | |
| ], | |
| inputs=msg, | |
| label="Example Prompts" | |
| ) | |
| submit_event = submit_btn.click( | |
| user, [msg, chatbot], [msg, chatbot], queue=False | |
| ).then( | |
| lambda: [True], outputs=active_gen | |
| ).then( | |
| generate_response, [chatbot, temperature, top_p, max_tokens, active_gen], chatbot | |
| ) | |
| msg.submit( | |
| user, [msg, chatbot], [msg, chatbot], queue=False | |
| ).then( | |
| lambda: [True], outputs=active_gen | |
| ).then( | |
| generate_response, [chatbot, temperature, top_p, max_tokens, active_gen], chatbot | |
| ) | |
| stop_btn.click( | |
| lambda: [False], None, active_gen, cancels=[submit_event] | |
| ) | |
| clear_btn.click(lambda: None, None, chatbot, queue=False) | |
| if __name__ == "__main__": | |
| # Install dependencies | |
| run_command('pip install llama-cpp-python openai') | |
| setup_llama_cpp() | |
| MODEL_PATH = setup_model(MODEL_ID) | |
| # Start llama-server | |
| server_process = start_llama_server(MODEL_PATH) | |
| try: | |
| # Launch GUI (set share=True if you need a public link) | |
| demo.launch(server_name="0.0.0.0", server_port=7860) | |
| finally: | |
| # Cleanup: terminate the server process when the GUI is closed | |
| server_process.terminate() | |
| server_process.wait() | |