hsuwill000 commited on
Commit
315fae0
·
verified ·
1 Parent(s): 5626aea

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -32
app.py CHANGED
@@ -1,5 +1,3 @@
1
-
2
- import time
3
  import gradio as gr
4
  from huggingface_hub import InferenceClient
5
  from optimum.intel import OVModelForCausalLM
@@ -14,40 +12,20 @@ tokenizer = AutoTokenizer.from_pretrained(model_id)
14
  pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
15
 
16
  def respond(message, history):
17
- start_time = time.time() # 記錄開始時間
18
-
19
  # 將當前訊息與歷史訊息合併
20
  input_text = message if not history else history[-1]["content"] + " " + message
21
  input_text = message
22
- # 設定生成參數
23
- max_length = 1024 # 增加最大生成長度
24
- output_text = ""
25
- stop_token = "<|endoftext|>" # 可選:結束標記
26
- while True:
27
- response = pipe(input_text, max_length=max_length, truncation=False, num_return_sequences=1)
28
- reply = response[0]['generated_text']
29
- output_text += reply
30
-
31
- # 檢測是否包含結束標記,或者生成結束
32
- if stop_token in reply or len(output_text) >= max_length:
33
- output_text = output_text.split(stop_token)[0] # 去掉結束標記以後的部分
34
- break
35
-
36
- # 更新輸入文字繼續生成
37
- input_text = reply
38
-
39
- end_time = time.time() # 記錄結束時間
40
- duration = end_time - start_time # 計算耗時
41
-
42
- # 輸出耗時到控制台
43
  print(f"Message: {message}")
44
- print(f"Reply: {output_text}")
45
- print(f"Time taken for response: {duration:.2f} seconds")
46
-
47
- return output_text
48
-
49
  # 設定 Gradio 的聊天界面
50
- demo = gr.ChatInterface(fn=respond, title="Phi-3.5-mini-instruct-openvino", description="Phi-3.5-mini-instruct-openvino", type='messages')
51
 
52
  if __name__ == "__main__":
53
- demo.launch()
 
 
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
  from optimum.intel import OVModelForCausalLM
 
12
  pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
13
 
14
  def respond(message, history):
 
 
15
  # 將當前訊息與歷史訊息合併
16
  input_text = message if not history else history[-1]["content"] + " " + message
17
  input_text = message
18
+ # 獲取模型的回應
19
+ response = pipe(input_text, max_length=1024, truncation=True, num_return_sequences=1)
20
+ reply = response[0]['generated_text']
21
+
22
+ # 返回新的消息格式
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  print(f"Message: {message}")
24
+ print(f"Reply: {reply}")
25
+ return reply
26
+
 
 
27
  # 設定 Gradio 的聊天界面
28
+ demo = gr.ChatInterface(fn=respond, title="Chat with Phi-3.5-mini-instruct-openvino", description="Phi-3.5-mini-instruct-openvino 聊天!", type='messages')
29
 
30
  if __name__ == "__main__":
31
+ demo.launch()