File size: 11,554 Bytes
0d0a4e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import requests
from bs4 import BeautifulSoup
import pandas as pd
import pysbd
import re


########################
## Year based search   ##
########################

BASE_URL = "https://www.wikidata.org/wiki/Wikidata:Requests_for_deletions/Archive"

def get_soup(url):
    response = requests.get(url)
    response.raise_for_status()
    return BeautifulSoup(response.text, 'html.parser')

def get_year_urls():
    soup = get_soup(BASE_URL)
    year_urls = {}
    for link in soup.select('a[href^="/wiki/Wikidata:Requests_for_deletions/Archive/"]'):
        year_url = link['href']
        if year_url.endswith(tuple(str(year) for year in range(2012, 2025))):
            year = year_url.split('/')[-1]
            full_year_url = "https://www.wikidata.org" + year_url
            year_urls[year] = full_year_url
    return year_urls

def get_month_day_urls(year_url):
    soup = get_soup(year_url)
    month_day_urls = []
    for link in soup.select('a[href^="/wiki/Wikidata:Requests_for_deletions/Archive/"]'):
        date_url = link['href']
        if len(date_url.split('/')) >= 7:
            full_date_url = "https://www.wikidata.org" + date_url
            if full_date_url not in month_day_urls:
                month_day_urls.append(full_date_url)
    return month_day_urls

def extract_outcome_from_dd(dd):
    try:
        result_tag = dd.find('b')
        if result_tag:
            return result_tag.get_text().strip()
        return 'unknown'
    except:
        return 'unknown'

def extract_discussions(url):
    soup = get_soup(url)
    discussions = []
    for h2 in soup.find_all('h2'):
        title_tag = h2.find('a')
        if title_tag and 'Q' in title_tag.get_text():
            title = title_tag.get_text().strip()
            discussion_parts = []
            last_dd = None
            for sibling in h2.find_all_next():
                if sibling.name == 'h2':
                    break
                if sibling.name == 'p':
                    discussion_parts.append(sibling.get_text(separator=' ', strip=True))
                if sibling.name == 'dl':
                    dds = sibling.find_all('dd')
                    if dds:
                        for dd in dds[:-1]:
                            discussion_parts.append(dd.get_text(separator=' ', strip=True))
                        last_dd = dds[-1]
            discussion_text = ' '.join(discussion_parts) if discussion_parts else 'No discussion found'
            outcome = extract_outcome_from_dd(last_dd) if last_dd else 'Outcome not found'
            entity_url = url + '#' + title
            discussions.append({
                "title": title,
                "discussion": discussion_text,
                "outcome": outcome,
                "url": entity_url,
                'date': url.split('Archive/')[-1]
            })
    return discussions

def remove_first_sentence_if_q_number(text):
    seg = pysbd.Segmenter(language="en", clean=False)
    sentences = seg.segment(text)
    if sentences and sentences[0].startswith('Q') and sentences[0][1:].isdigit():
        return ' '.join(sentences[1:])
    return text

def process_discussions_by_url_list(url_list):
    all_discussions = []
    for url in url_list:
        discussions = extract_discussions(url)
        all_discussions.extend(discussions)
    df = pd.DataFrame(all_discussions)
    if not df.empty:
        df['discussion'] = df['discussion'].apply(remove_first_sentence_if_q_number)
    return df


########################
## Title based search ##
########################

import requests
from bs4 import BeautifulSoup
import pandas as pd
import pysbd

def html_to_plaintext(html_content):
    soup = BeautifulSoup(html_content, 'html.parser')
    for tag in soup.find_all(['p', 'li', 'dd', 'dl', 'ul']):
        tag.insert_before('\n')
        tag.insert_after('\n')
    for br in soup.find_all('br'):
        br.replace_with('\n')
    text = soup.get_text(separator=' ', strip=True)
    text = '\n'.join([line.strip() for line in text.splitlines() if line.strip() != ''])
    return text

def split_text_into_sentences(text):
    seg = pysbd.Segmenter(language="en", clean=False)
    sentences = seg.segment(text)
    return ' '.join(sentences)

def clean_discussion_tag(tag):
    for unwanted in tag.find_all(['span', 'img', 'a', 'div'], recursive=True):
        unwanted.decompose()
    return tag.get_text(separator=' ', strip=True)

def extract_outcome_from_text_elements(elements):
    consensus_keywords = [
        'Deleted', 'Delete', 'delete', 'deleted', 
        'kept', 'keep', 'Keep', 'Kept', 
        'merge', 'Merge', 'Not done', 'No consensus', 'no consensus'
    ]
    for el in elements:
        b_tags = el.find_all('b')
        for b in b_tags:
            if b.text.strip() in consensus_keywords:
                return b.text.strip()
    return ''

def extract_discussion_section(soup, title):
    h2_tag = soup.find('h2', id=title)
    if not h2_tag:
        print(f"No heading found with id={title}")
        return '', '', ''

    heading_div = h2_tag.find_parent('div', class_='mw-heading mw-heading2 ext-discussiontools-init-section')
    if not heading_div:
        print(f"No heading div found for {title}")
        return '', '', ''

    next_heading_div = heading_div.find_next('div', class_='mw-heading mw-heading2 ext-discussiontools-init-section')
    discussion_nodes = []
    for sibling in heading_div.next_siblings:
        if sibling == next_heading_div:
            break
        discussion_nodes.append(sibling)

    discussion_tags = []
    for node in discussion_nodes:
        if getattr(node, 'name', None) in ['p', 'ul', 'dl']:
            if node.has_attr('class') and 'plainlinks' in node['class']:
                continue
            if node.get('style', '').lower() == 'visibility:hidden;display:none':
                continue
            if node.find('span', id=title):
                continue
            discussion_tags.append(node)

    if not discussion_tags:
        return '', '', ''
    
    label = extract_outcome_from_text_elements(discussion_tags)
    discussion_html_parts = [str(tag) for tag in discussion_tags]
    cleaned_parts = []
    for tag in discussion_tags:
        text = clean_discussion_tag(tag)
        if text:
            cleaned_parts.append(text)

    cleaned_discussion = ' '.join(cleaned_parts)
    discussion_html = '\n'.join(discussion_html_parts)
    return discussion_html, label, cleaned_discussion

def extract_div_from_title(title, url=''):
    if url=='' or not url:
        base_url = 'https://www.wikidata.org/wiki/Wikidata:Requests_for_deletions'
        url = base_url + '#' + title
        text_url = base_url
        discussion_url = text_url + '#' + title


    response = requests.get(url)
    if response.status_code != 200:
        print(f"Could not fetch {url}")
        return pd.DataFrame(columns=['title', 'text_url', 'discussion_url', 'discussion_cleaned', 'label'])
    if title == '':
        title = url.split('#')[-1]

    soup = BeautifulSoup(response.content, 'html.parser')
    discussion_html, label, cleaned_discussion = extract_discussion_section(soup, title)

    text_url = 'https://www.wikidata.org/wiki/'+ url.split('#')[0]
    discussion_url = url

    df = pd.DataFrame([[title, text_url, discussion_url, cleaned_discussion, label]],
                      columns=['title', 'text_url', 'discussion_url', 'discussion_cleaned', 'label'])
    if label:
        df['label'] = df['label'].replace({
            'Deleted':'delete', 'Delete':'delete', 'delete':'delete', 'deleted':'delete', 
            'kept':'keep', 'keep':'keep', 'Keep':'keep', 'Kept':'keep', 
            'merge':'merge', 'Merge':'merge', 'Not done':'no_consensus', 
            'No consensus':'no_consensus', 'no consensus':'no_consensus'
        })
    df['discussion_cleaned'] = df['discussion_cleaned'].apply(split_text_into_sentences)

    return df


########################
## Collection function ##
########################


import pandas as pd

def collect_wikidata_entity(mode='year', title='', url='', years=[]):
    if mode not in ['title', 'year','url']:
        raise ValueError("mode must be either 'title' or 'year'")

    if mode == 'title':
        if not title or years:
            raise ValueError("For 'title' mode, 'title' must be provided and 'years' must be empty.")
        df = extract_div_from_title(title)
        df = df.rename(columns={'label':'outcome', 'discussion_cleaned':'discussion'})
        return df
    elif mode == 'url':
        if 'Archive' in url:
            archived_url = url.split('#')[0]
            title = url.split('#')[-1]
            disc_df = process_discussions_by_url_list([archived_url])
            disc_df['title'] = disc_df['title'].str.strip()
            title = title.strip()
            df = disc_df[disc_df['title'] == title]
            print(f"Found {len(df)} discussions for title {title}")
            if df.empty:
                return pd.DataFrame(columns=['title', 'text_url', 'discussion_url', 'discussion_cleaned', 'label'])
            df = df.rename(columns={'label':'outcome', 'discussion_cleaned':'discussion'})
            return df
        if title or years:
            raise ValueError("For 'url' mode, 'url' must be provided and 'title' must be empty.")
        df = extract_div_from_title('', url)
        df = df.rename(columns={'label':'outcome', 'discussion_cleaned':'discussion'})
        return df

    elif mode == 'year':
        if title or not years:
            raise ValueError("For 'year' mode, 'years' must be provided and 'title' must be empty.")
        if isinstance(years, list) and len(years) == 2:
            start_year, end_year = years
            years = list(range(start_year, end_year + 1))
        elif isinstance(years, int):
            years = [years]
        df = pd.DataFrame()
        for year in years:
            print(f"Processing year: {year}")

            year_urls = get_year_urls() 
            if str(year) not in year_urls:
                print(f"No URL found for year {year}")
                continue
            year_url = year_urls[str(year)]
            month_day_urls = get_month_day_urls(year_url)
            print(f"Found {len(month_day_urls)} month-day URLs for {year}")
            discussions_df = process_discussions_by_url_list(month_day_urls)
            
            if discussions_df.empty:
                continue

            discussions_df.rename(columns={'url':'discussion_url', 'outcome':'label', 'discussion':'discussion_cleaned'}, inplace=True)
            text_url = year_url
            discussions_df['text_url'] = text_url
            discussions_df['label'] = discussions_df['label'].replace({
                'Deleted':'delete', 'Delete':'delete', 'delete':'delete', 'deleted':'delete', 
                'kept':'keep', 'keep':'keep', 'Keep':'keep', 'Kept':'keep', 
                'merge':'merge', 'Merge':'merge', 'Not done':'no_consensus', 
                'No consensus':'no_consensus', 'no consensus':'no_consensus'
            })

            desired_columns = ['title', 'text_url', 'discussion_url', 'discussion_cleaned', 'label']
            for col in desired_columns:
                if col not in discussions_df.columns:
                    discussions_df[col] = ''
            discussions_df = discussions_df[desired_columns]

            df = pd.concat([df, discussions_df], ignore_index=True)
            df = df.rename(columns={'label':'outcome', 'discussion_cleaned':'discussion'})
        return df