File size: 12,572 Bytes
2e68d8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import requests
import pandas as pd
from bs4 import BeautifulSoup
import pysbd
from datetime import datetime, timedelta

def extract_div_contents_with_additional_columns(url, log_date):
    response = requests.get(url)
    if response.status_code != 200:
        return pd.DataFrame(columns=['log_date', 'title', 'text_url', 'deletion_discussion', 'label', 'confirmation', 'verdict', 'discussion'])

    soup = BeautifulSoup(response.content, 'html.parser')
    div_classes = ['boilerplate afd vfd xfd-closed', 'boilerplate afd vfd xfd-closed archived mw-archivedtalk']
    divs = []
    for div_class in div_classes:
        divs.extend(soup.find_all('div', class_=div_class))
    url_fragment = url.split('#')[-1].replace('_', ' ')
    data = []
    for div in divs:
        title_tag = div.find('a')
        if title_tag:
            title_span = div.find('span', {'data-mw-comment-start': True})
            if title_span:
                title_anchor = title_span.find_next_sibling('a')
                if title_anchor:
                    title = title_anchor.text
                    text_url = 'https://en.wikipedia.org' + title_anchor['href']
            else:
                title = title_tag.text
                text_url = 'https://en.wikipedia.org' + title_tag['href']
                
            deletion_discussion = div.prettify()

            # Extract label
            label = ''
            verdict_tag = div.find('p')
            if verdict_tag:
                label_b_tag = verdict_tag.find('b')
                if label_b_tag:
                    label = verdict_tag.prettify()

            # Extract confirmation
            confirmation = ''
            discussion_tag = div.find('dd').find('i')
            if discussion_tag:
                confirmation_b_tag = discussion_tag.find('b')
                if confirmation_b_tag:
                    confirmation = discussion_tag.prettify()

        
            parts = deletion_discussion.split('<div class="mw-heading mw-heading3">')
            discussion = parts[0] if len(parts) > 0 else ''
            verdict = '<div class="mw-heading mw-heading3">' + parts[1] if len(parts) > 1 else ''
            data.append([log_date, title, text_url, deletion_discussion, label, confirmation, discussion, verdict])
    df = pd.DataFrame(data, columns=['log_date', 'title', 'text_url', 'deletion_discussion', 'label', 'confirmation', 'verdict', 'discussion'])
    return df


def extract_div_contents_from_url(url,date):
    response = requests.get(url)
    if response.status_code != 200:
        print(f"Error: Received status code {response.status_code} for URL: {url}")
        return pd.DataFrame(columns=['date','title', 'text_url', 'deletion_discussion', 'label', 'confirmation', 'discussion', 'verdict'])

    soup = BeautifulSoup(response.content, 'html.parser')
    div_classes = ['boilerplate afd vfd xfd-closed', 'boilerplate afd vfd xfd-closed archived mw-archivedtalk']
    divs = []
    for div_class in div_classes:
        divs.extend(soup.find_all('div', class_=div_class))
    url_fragment = url.split('#')[-1].replace('_', ' ')
    log_date = url.split('/')[-1]


    data = []
    for div in divs:
        try:
            title = None
            text_url = None
            title_tag = div.find('a')
            if title_tag:
                title_span = div.find('span', {'data-mw-comment-start': True})
                if title_span:
                    title_anchor = title_span.find_next_sibling('a')
                    if title_anchor:
                        title = title_anchor.text
                        text_url = 'https://en.wikipedia.org' + title_anchor['href']
                else:
                    title = title_tag.text
                    text_url = 'https://en.wikipedia.org' + title_tag['href']

            if title == 'talk page' or title is None:
                heading_tag = div.find('div', class_='mw-heading mw-heading3')
                if heading_tag:
                    title_tag = heading_tag.find('a')
                    if title_tag:
                        title = title_tag.text
                        text_url = 'https://en.wikipedia.org' + title_tag['href']

            if not title:
                continue
            if title.lower() != url_fragment.lower():
                continue  
            deletion_discussion = div.prettify()
            label = ''
            verdict_tag = div.find('p')
            if verdict_tag:
                label_b_tag = verdict_tag.find('b')
                if label_b_tag:
                    label = label_b_tag.text.strip()
            confirmation = ''
            discussion_tag = div.find('dd')
            if discussion_tag:
                discussion_tag_i = discussion_tag.find('i')
                if discussion_tag_i:
                    confirmation_b_tag = discussion_tag_i.find('b')
                    if confirmation_b_tag:
                        confirmation = confirmation_b_tag.text.strip()
            parts = deletion_discussion.split('<div class="mw-heading mw-heading3">')
            discussion = parts[0] if len(parts) > 0 else ''
            verdict = '<div class="mw-heading mw-heading3">' + parts[1] if len(parts) > 1 else ''

            data.append([date,title, text_url, deletion_discussion, label, confirmation, verdict, discussion])
        except Exception as e:
            print(f"Error processing div: {e}")
            continue

    df = pd.DataFrame(data, columns=['date', 'title', 'text_url', 'deletion_discussion', 'label', 'confirmation', 'discussion', 'verdict'])
    return df




def extract_div_contents_from_url_new(url,date):
    response = requests.get(url)
    if response.status_code != 200:
        print(f"Error: Received status code {response.status_code} for URL: {url}")
        return pd.DataFrame(columns=['date', 'title', 'text_url', 'deletion_discussion', 'label', 'confirmation', 'discussion', 'verdict'])

    soup = BeautifulSoup(response.content, 'html.parser')
    div_classes = ['boilerplate afd vfd xfd-closed', 'boilerplate afd vfd xfd-closed archived mw-archivedtalk',"mw-heading mw-heading3"]
    divs = []

    for div_class in div_classes:
        divs.extend(soup.find_all('div', class_=div_class))

    url_fragment = url.split('#')[-1].replace('_', ' ')
    log_date = url.split('/')[-1]

    data = []
    for i, div in enumerate(divs):
        try:
            title = None
            text_url = None
            title_tag = div.find('a')
            if title_tag:
                title_span = div.find('span', {'data-mw-comment-start': True})
                if title_span:
                    title_anchor = title_span.find_next_sibling('a')
                    if title_anchor:
                        title = title_anchor.text
                        text_url = 'https://en.wikipedia.org' + title_anchor['href']
                else:
                    title = title_tag.text
                    text_url = 'https://en.wikipedia.org' + title_tag['href']

            if title == 'talk page' or title is None:
                heading_tag = div.find('div', class_='mw-heading mw-heading3')
                if heading_tag:
                    title_tag = heading_tag.find('a')
                    if title_tag:
                        title = title_tag.text
                        text_url = 'https://en.wikipedia.org' + title_tag['href']

            if not title:
                continue
            if title.lower() != url_fragment.lower():
                continue

            next_div = div.find_next('div', class_='mw-heading mw-heading3')
            deletion_discussion = ''
            sibling = div.find_next_sibling()
            while sibling and sibling != next_div:
                deletion_discussion += str(sibling)
                sibling = sibling.find_next_sibling()

            label = ''
            verdict_tag = div.find('p')
            if verdict_tag:
                label_b_tag = verdict_tag.find('b')
                if label_b_tag:
                    label = label_b_tag.text.strip()
            confirmation = ''
            discussion_tag = div.find('dd')
            if discussion_tag:
                discussion_tag_i = discussion_tag.find('i')
                if discussion_tag_i:
                    confirmation_b_tag = discussion_tag_i.find('b')
                    if confirmation_b_tag:
                        confirmation = confirmation_b_tag.text.strip()
            parts = deletion_discussion.split('<div class="mw-heading mw-heading3">')
            discussion = parts[0] if len(parts) > 0 else ''
            verdict = '<div class="mw-heading mw-heading3">' + parts[1] if len(parts) > 1 else ''

            data.append([date, title, text_url, deletion_discussion, label, confirmation, verdict, discussion])
        except Exception as e:
            print(f"Error processing div: {e}")
            continue

    df = pd.DataFrame(data, columns=['date', 'title', 'text_url', 'deletion_discussion', 'label', 'confirmation', 'discussion', 'verdict'])
    return df

def extract_label(label_html):
    soup = BeautifulSoup(label_html, 'html.parser')
    b_tag = soup.find('b')
    return b_tag.text.strip() if b_tag else ''

def process_labels(df):
    df['proper_label'] = df['label'].apply(extract_label)
    return df

def extract_confirmation(confirmation_html):
    soup = BeautifulSoup(confirmation_html, 'html.parser')
    b_tag = soup.find('span', {'style': 'color:red'}).find('b')
    return b_tag.text.strip() if b_tag else ''

def process_confirmations(df):
    df['confirmation'] = df['confirmation'].apply(extract_confirmation)
    return df

def extract_post_links_text(discussion_html):
    split_point = '<span class="plainlinks">'
    if split_point in discussion_html:
        parts = discussion_html.split(split_point)
        if len(parts) > 1:
            return parts[1]
    return discussion_html

def process_discussion(df):

    df['discussion_cleaned'] = df['discussion'].apply(extract_post_links_text)
    return df

def html_to_plaintext(html_content):
    soup = BeautifulSoup(html_content, 'html.parser')
    for tag in soup.find_all(['p', 'li', 'dd', 'dl']):
        tag.insert_before('\n')
        tag.insert_after('\n')
    for br in soup.find_all('br'):
        br.replace_with('\n')

    text = soup.get_text(separator=' ', strip=True)
    text = '\n'.join([line.strip() for line in text.splitlines() if line.strip() != ''])

    return text

def process_html_to_plaintext(df):
    df['discussion_cleaned'] = df['discussion_cleaned'].apply(html_to_plaintext)
    return df

def split_text_into_sentences(text):
    seg = pysbd.Segmenter(language="en", clean=False)
    sentences = seg.segment(text)
    return ' '.join(sentences[1:])

def process_split_text_into_sentences(df):
    df['discussion_cleaned'] = df['discussion_cleaned'].apply(split_text_into_sentences)
    return df

def process_data(url,date):
    df = extract_div_contents_from_url(url,date)
    #print('Discussion: ',df.discussion.tolist())
    if df.discussion.tolist() == []:
      #print('Empty Discussion')
      df = extract_div_contents_from_url_new(url,date)
    #print(df.head())
    df = process_discussion(df)
    #print(df.at[0,'discussion'])
    df = process_html_to_plaintext(df)
    df = process_split_text_into_sentences(df)
    if not df.empty:
        return df
    else:
        return 'Empty DataFrame'

def collect_deletion_discussions(start_date, end_date):
    base_url = 'https://en.wikipedia.org/wiki/Wikipedia:Articles_for_deletion/Log/'
    all_data = pd.DataFrame()

    current_date = start_date
    while current_date <= end_date:
        try:
            print(f"Processing {current_date.strftime('%Y-%B-%d')}")
            date_str = current_date.strftime('%Y_%B_%d')
            url = base_url + date_str
            log_date = current_date.strftime('%Y-%m-%d')

            df = extract_div_contents_with_additional_columns(url, log_date)
            if not df.empty:
                df = process_labels(df)
                df = process_confirmations(df)
                df = process_discussion(df)
                df = process_html_to_plaintext(df)
                df = process_split_text_into_sentences(df)
                all_data = pd.concat([all_data, df], ignore_index=True)

            current_date += timedelta(days=1)
        except Exception as e:
            print(f"Error processing {current_date.strftime('%Y-%B-%d')}: {e}")
            current_date += timedelta(days=1)
            continue

    return all_data