Spaces:
Sleeping
Sleeping
File size: 12,572 Bytes
2e68d8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
import requests
import pandas as pd
from bs4 import BeautifulSoup
import pysbd
from datetime import datetime, timedelta
def extract_div_contents_with_additional_columns(url, log_date):
response = requests.get(url)
if response.status_code != 200:
return pd.DataFrame(columns=['log_date', 'title', 'text_url', 'deletion_discussion', 'label', 'confirmation', 'verdict', 'discussion'])
soup = BeautifulSoup(response.content, 'html.parser')
div_classes = ['boilerplate afd vfd xfd-closed', 'boilerplate afd vfd xfd-closed archived mw-archivedtalk']
divs = []
for div_class in div_classes:
divs.extend(soup.find_all('div', class_=div_class))
url_fragment = url.split('#')[-1].replace('_', ' ')
data = []
for div in divs:
title_tag = div.find('a')
if title_tag:
title_span = div.find('span', {'data-mw-comment-start': True})
if title_span:
title_anchor = title_span.find_next_sibling('a')
if title_anchor:
title = title_anchor.text
text_url = 'https://en.wikipedia.org' + title_anchor['href']
else:
title = title_tag.text
text_url = 'https://en.wikipedia.org' + title_tag['href']
deletion_discussion = div.prettify()
# Extract label
label = ''
verdict_tag = div.find('p')
if verdict_tag:
label_b_tag = verdict_tag.find('b')
if label_b_tag:
label = verdict_tag.prettify()
# Extract confirmation
confirmation = ''
discussion_tag = div.find('dd').find('i')
if discussion_tag:
confirmation_b_tag = discussion_tag.find('b')
if confirmation_b_tag:
confirmation = discussion_tag.prettify()
parts = deletion_discussion.split('<div class="mw-heading mw-heading3">')
discussion = parts[0] if len(parts) > 0 else ''
verdict = '<div class="mw-heading mw-heading3">' + parts[1] if len(parts) > 1 else ''
data.append([log_date, title, text_url, deletion_discussion, label, confirmation, discussion, verdict])
df = pd.DataFrame(data, columns=['log_date', 'title', 'text_url', 'deletion_discussion', 'label', 'confirmation', 'verdict', 'discussion'])
return df
def extract_div_contents_from_url(url,date):
response = requests.get(url)
if response.status_code != 200:
print(f"Error: Received status code {response.status_code} for URL: {url}")
return pd.DataFrame(columns=['date','title', 'text_url', 'deletion_discussion', 'label', 'confirmation', 'discussion', 'verdict'])
soup = BeautifulSoup(response.content, 'html.parser')
div_classes = ['boilerplate afd vfd xfd-closed', 'boilerplate afd vfd xfd-closed archived mw-archivedtalk']
divs = []
for div_class in div_classes:
divs.extend(soup.find_all('div', class_=div_class))
url_fragment = url.split('#')[-1].replace('_', ' ')
log_date = url.split('/')[-1]
data = []
for div in divs:
try:
title = None
text_url = None
title_tag = div.find('a')
if title_tag:
title_span = div.find('span', {'data-mw-comment-start': True})
if title_span:
title_anchor = title_span.find_next_sibling('a')
if title_anchor:
title = title_anchor.text
text_url = 'https://en.wikipedia.org' + title_anchor['href']
else:
title = title_tag.text
text_url = 'https://en.wikipedia.org' + title_tag['href']
if title == 'talk page' or title is None:
heading_tag = div.find('div', class_='mw-heading mw-heading3')
if heading_tag:
title_tag = heading_tag.find('a')
if title_tag:
title = title_tag.text
text_url = 'https://en.wikipedia.org' + title_tag['href']
if not title:
continue
if title.lower() != url_fragment.lower():
continue
deletion_discussion = div.prettify()
label = ''
verdict_tag = div.find('p')
if verdict_tag:
label_b_tag = verdict_tag.find('b')
if label_b_tag:
label = label_b_tag.text.strip()
confirmation = ''
discussion_tag = div.find('dd')
if discussion_tag:
discussion_tag_i = discussion_tag.find('i')
if discussion_tag_i:
confirmation_b_tag = discussion_tag_i.find('b')
if confirmation_b_tag:
confirmation = confirmation_b_tag.text.strip()
parts = deletion_discussion.split('<div class="mw-heading mw-heading3">')
discussion = parts[0] if len(parts) > 0 else ''
verdict = '<div class="mw-heading mw-heading3">' + parts[1] if len(parts) > 1 else ''
data.append([date,title, text_url, deletion_discussion, label, confirmation, verdict, discussion])
except Exception as e:
print(f"Error processing div: {e}")
continue
df = pd.DataFrame(data, columns=['date', 'title', 'text_url', 'deletion_discussion', 'label', 'confirmation', 'discussion', 'verdict'])
return df
def extract_div_contents_from_url_new(url,date):
response = requests.get(url)
if response.status_code != 200:
print(f"Error: Received status code {response.status_code} for URL: {url}")
return pd.DataFrame(columns=['date', 'title', 'text_url', 'deletion_discussion', 'label', 'confirmation', 'discussion', 'verdict'])
soup = BeautifulSoup(response.content, 'html.parser')
div_classes = ['boilerplate afd vfd xfd-closed', 'boilerplate afd vfd xfd-closed archived mw-archivedtalk',"mw-heading mw-heading3"]
divs = []
for div_class in div_classes:
divs.extend(soup.find_all('div', class_=div_class))
url_fragment = url.split('#')[-1].replace('_', ' ')
log_date = url.split('/')[-1]
data = []
for i, div in enumerate(divs):
try:
title = None
text_url = None
title_tag = div.find('a')
if title_tag:
title_span = div.find('span', {'data-mw-comment-start': True})
if title_span:
title_anchor = title_span.find_next_sibling('a')
if title_anchor:
title = title_anchor.text
text_url = 'https://en.wikipedia.org' + title_anchor['href']
else:
title = title_tag.text
text_url = 'https://en.wikipedia.org' + title_tag['href']
if title == 'talk page' or title is None:
heading_tag = div.find('div', class_='mw-heading mw-heading3')
if heading_tag:
title_tag = heading_tag.find('a')
if title_tag:
title = title_tag.text
text_url = 'https://en.wikipedia.org' + title_tag['href']
if not title:
continue
if title.lower() != url_fragment.lower():
continue
next_div = div.find_next('div', class_='mw-heading mw-heading3')
deletion_discussion = ''
sibling = div.find_next_sibling()
while sibling and sibling != next_div:
deletion_discussion += str(sibling)
sibling = sibling.find_next_sibling()
label = ''
verdict_tag = div.find('p')
if verdict_tag:
label_b_tag = verdict_tag.find('b')
if label_b_tag:
label = label_b_tag.text.strip()
confirmation = ''
discussion_tag = div.find('dd')
if discussion_tag:
discussion_tag_i = discussion_tag.find('i')
if discussion_tag_i:
confirmation_b_tag = discussion_tag_i.find('b')
if confirmation_b_tag:
confirmation = confirmation_b_tag.text.strip()
parts = deletion_discussion.split('<div class="mw-heading mw-heading3">')
discussion = parts[0] if len(parts) > 0 else ''
verdict = '<div class="mw-heading mw-heading3">' + parts[1] if len(parts) > 1 else ''
data.append([date, title, text_url, deletion_discussion, label, confirmation, verdict, discussion])
except Exception as e:
print(f"Error processing div: {e}")
continue
df = pd.DataFrame(data, columns=['date', 'title', 'text_url', 'deletion_discussion', 'label', 'confirmation', 'discussion', 'verdict'])
return df
def extract_label(label_html):
soup = BeautifulSoup(label_html, 'html.parser')
b_tag = soup.find('b')
return b_tag.text.strip() if b_tag else ''
def process_labels(df):
df['proper_label'] = df['label'].apply(extract_label)
return df
def extract_confirmation(confirmation_html):
soup = BeautifulSoup(confirmation_html, 'html.parser')
b_tag = soup.find('span', {'style': 'color:red'}).find('b')
return b_tag.text.strip() if b_tag else ''
def process_confirmations(df):
df['confirmation'] = df['confirmation'].apply(extract_confirmation)
return df
def extract_post_links_text(discussion_html):
split_point = '<span class="plainlinks">'
if split_point in discussion_html:
parts = discussion_html.split(split_point)
if len(parts) > 1:
return parts[1]
return discussion_html
def process_discussion(df):
df['discussion_cleaned'] = df['discussion'].apply(extract_post_links_text)
return df
def html_to_plaintext(html_content):
soup = BeautifulSoup(html_content, 'html.parser')
for tag in soup.find_all(['p', 'li', 'dd', 'dl']):
tag.insert_before('\n')
tag.insert_after('\n')
for br in soup.find_all('br'):
br.replace_with('\n')
text = soup.get_text(separator=' ', strip=True)
text = '\n'.join([line.strip() for line in text.splitlines() if line.strip() != ''])
return text
def process_html_to_plaintext(df):
df['discussion_cleaned'] = df['discussion_cleaned'].apply(html_to_plaintext)
return df
def split_text_into_sentences(text):
seg = pysbd.Segmenter(language="en", clean=False)
sentences = seg.segment(text)
return ' '.join(sentences[1:])
def process_split_text_into_sentences(df):
df['discussion_cleaned'] = df['discussion_cleaned'].apply(split_text_into_sentences)
return df
def process_data(url,date):
df = extract_div_contents_from_url(url,date)
#print('Discussion: ',df.discussion.tolist())
if df.discussion.tolist() == []:
#print('Empty Discussion')
df = extract_div_contents_from_url_new(url,date)
#print(df.head())
df = process_discussion(df)
#print(df.at[0,'discussion'])
df = process_html_to_plaintext(df)
df = process_split_text_into_sentences(df)
if not df.empty:
return df
else:
return 'Empty DataFrame'
def collect_deletion_discussions(start_date, end_date):
base_url = 'https://en.wikipedia.org/wiki/Wikipedia:Articles_for_deletion/Log/'
all_data = pd.DataFrame()
current_date = start_date
while current_date <= end_date:
try:
print(f"Processing {current_date.strftime('%Y-%B-%d')}")
date_str = current_date.strftime('%Y_%B_%d')
url = base_url + date_str
log_date = current_date.strftime('%Y-%m-%d')
df = extract_div_contents_with_additional_columns(url, log_date)
if not df.empty:
df = process_labels(df)
df = process_confirmations(df)
df = process_discussion(df)
df = process_html_to_plaintext(df)
df = process_split_text_into_sentences(df)
all_data = pd.concat([all_data, df], ignore_index=True)
current_date += timedelta(days=1)
except Exception as e:
print(f"Error processing {current_date.strftime('%Y-%B-%d')}: {e}")
current_date += timedelta(days=1)
continue
return all_data
|