Spaces:
Runtime error
Runtime error
File size: 1,683 Bytes
f488959 e518a26 c560c8f f488959 3c89335 e518a26 f488959 e518a26 25b84dd f488959 e518a26 d8f7e36 f488959 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
import gradio as gr
from diffusers import StableDiffusionPipeline
import requests
import base64
import torch
import os
auth_token = os.environ.get("auth_token")
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
generator = torch.Generator(device=device)
seed = 496012807434005 #generator.seed()
generator = generator.manual_seed(seed)
#HF_TOKEN = os.getenv('HF_TOKEN')
hf_writer =gr.HuggingFaceDatasetSaver(auth_token, "dst-movie-poster-demo")
def improve_image(img):
# ANSWER HERE
img_in_base64 = gr.processing_utils.encode_pil_to_base64(img)
scale=3
resp_obj = requests.post('https://hf.space/embed/abidlabs/GFPGAN/+/api/predict',json={'data':[img_in_base64,scale]})
resp_img = gr.processing_utils.decode_base64_to_image((resp_obj.json())['data'][0])
return resp_img
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4",use_auth_token= auth_token)
pipe = pipe.to(device)
def generate(celebrity, setting):
# ANSWER HERE
prompt = 'A movie poster of {} in the movie{}'.format(celebrity,setting)
latent_sample = torch.randn((1,4,64,64),generator = generator,device=device)
gen_img = pipe(prompt,latents=latent_sample,num_inference_steps=100,guidance_scale=g_scale[i]).images[0]
image = improve_image(gen_img)
return image
gr.Interface(
# ANSWER HERE
fn=generate,
inputs=[gr.Textbox(label='Celebrity'), gr.Dropdown(['The Godfather', 'Titanic', 'Fast and Furious'], label='Movie')],
outputs = gr.Image(type='pill'),
allow_flagging="manual",
flagging_options = ['Incorrect movie poster','Incorrect Actor','Other Problem'],
flagging_callback=hf_writer,
flagging_dir='flagged_data'
).launch() |