File size: 3,798 Bytes
cb069fa
 
 
b6e5361
 
 
 
 
 
 
 
 
d39daa5
b6e5361
 
d39daa5
cb069fa
b6e5361
 
c1ff79f
b6e5361
 
 
 
 
 
ec6e22f
b6e5361
ec6e22f
 
 
 
 
 
5a17a57
fc9c3c5
ec6e22f
b6e5361
 
ec6e22f
 
 
 
 
 
 
 
b6e5361
 
 
fc9c3c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6e5361
fc9c3c5
b6e5361
 
 
 
fc9c3c5
 
b6e5361
16e0909
b6e5361
 
 
 
 
 
 
c1ff79f
b6e5361
bcdf45a
b6e5361
 
 
 
 
 
f54b979
b6e5361
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import streamlit as st
import google.generativeai as genai

# Streamlit app layout
st.title('PromptLab')

# Create two columns for the Shinobi and Raikage buttons
col1, col2 = st.columns(2)

mode = st.radio("Choose a mode:", ["Shinobi", "Raikage"], horizontal=True)

# Retrieve the API key from Streamlit secrets
GOOGLE_API_KEY = st.secrets["GEMINI_API_KEY"]

# Configure the Google Generative AI API with your API key
genai.configure(api_key=GOOGLE_API_KEY)

# Input field for the blog topic
topic = st.text_area('Enter your prompt:')

# Display selected mode
st.write(f"You selected: {mode}")


# Shinobi and Raikage templates
SHINOBI_TEMPLATE = """
You are an expert in [domain]. Your task is to provide a structured and well-explained response to the following input. 

Ensure your response follows these principles:  
βœ… **Clarity & Conciseness** β†’ Avoid unnecessary complexity while maintaining depth.  
βœ… **Step-by-Step Explanation** β†’ Break down concepts logically.  
βœ… **Real-World Examples** β†’ Use relatable examples when possible.  
βœ… **Structured Formatting** β†’ Organize content using headings, bullet points, or numbered lists.  
βœ… **Instructional Approach** β†’ If applicable, provide additional details, such as use cases, best practices, or challenges.  
βœ… **Do NOT Answer the Prompt** β†’ Your job is to enhance, NOT to generate a response.

**Input:**  
{user_prompt}  

**Enhanced Output Format:**  
1. **Introduction/Definition** β†’ Provide an overview of the topic.  
2. **Key Concepts** β†’ List and explain essential elements.  
3. **Examples & Applications** β†’ Offer real-world applications.  
4. **Best Practices/Challenges** β†’ Highlight important considerations.  
5. **Conclusion/Final Thoughts** β†’ Summarize key takeaways.  

Ensure your response is easy to follow, informative, and avoids unnecessary jargon. Clearly label each section for easy navigation.        
"""

RAIKAGE_TEMPLATE = """
You are an elite-level [role] with deep expertise in [subject].  
Your task is to develop a structured, high-quality response following these key elements:  

## **Context**  
[Provide background information related to the task to frame the problem.]  

## **Approach**  
[Define a **step-by-step** breakdown of how to achieve the goal, focusing on methodology and best practices.]  

## **Response Format**  
[Specify the expected output structure, ensuring clarity and completeness.]  

## **Instructions**  
- [Ensure high-quality standards, best practices, and possible constraints.]  
- [Emphasize documentation, flexibility, and potential edge cases.]  

Enhance the following prompt using this **structured, expert-level framework:**  

**Original Prompt:**  
{user_prompt}  

**Enhanced Prompt:**  
(Apply the Mastermind framework to generate the improved version)    
"""
if st.button("Generate Enhanced Prompt"):
    if topic.strip():
        with st.spinner("Enhancing your prompt..."):
            # Choose the template based on the selected mode
            if mode == "Shinobi":
                prompt = SHINOBI_TEMPLATE.format(user_prompt=topic)
            else:
                prompt = RAIKAGE_TEMPLATE.format(user_prompt=topic)

            # Initialize the generative model
            model = genai.GenerativeModel('gemini-2.0-flash')

            # Generate enhanced prompt
            try:
                response = model.generate_content(prompt)
                enhanced_prompt = response.text  # Extract the response text
                st.subheader("πŸ”Ή Enhanced Prompt:")
                st.code(enhanced_prompt, language="markdown")
            except Exception as e:
                st.error(f"❌ Error generating enhanced prompt: {e}")
    else:
        st.warning("⚠️ Please enter a prompt before generating.")