File size: 9,682 Bytes
3f1766c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a05578
7a02180
 
 
 
1d0e242
029b270
34180dc
 
 
13ef9bd
7a02180
13ef9bd
 
 
b73c2dc
7a02180
1d0e242
 
 
7a02180
5f427c8
ffcdd2f
5f427c8
1f67127
5f427c8
ffcdd2f
 
 
 
 
a5a4d55
3f1766c
029b270
3f1766c
733ce32
f0b4d32
e821d73
0a05578
3f1766c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa6219c
3f1766c
 
 
 
 
cf0d006
3f1766c
5835805
e9dae80
 
3f1766c
 
 
aa6219c
3f1766c
 
 
 
 
 
 
 
 
 
 
 
 
dafc9ee
 
3f1766c
dafc9ee
3f1766c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d0e242
3f1766c
 
a9cba0f
1d0e242
 
 
e939db3
1d0e242
029b270
 
 
 
3f1766c
 
57b14a8
029b270
 
1d0e242
 
 
 
029b270
3f1766c
 
 
 
 
a5a4d55
3f1766c
 
 
 
 
 
 
ffcdd2f
3f1766c
ffcdd2f
 
 
 
3f1766c
 
 
 
 
 
 
 
 
ffcdd2f
8f22a63
ffcdd2f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
from gpt_index import GPTListIndex, SimpleWebPageReader, BeautifulSoupWebReader, GPTSimpleVectorIndex,LLMPredictor
from IPython.display import Markdown, display
from langchain.agents import load_tools, Tool, initialize_agent
from langchain.llms import OpenAI
from langchain.agents import ZeroShotAgent, Tool, AgentExecutor
from langchain.agents import initialize_agent, Tool
from langchain import LLMChain
from langchain import PromptTemplate
import gradio as gr
import pandas as pd
import openai
from sklearn.manifold import TSNE
from sklearn.cluster import KMeans
from openai.embeddings_utils import get_embedding

import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import datetime
from datetime import datetime, date, time, timedelta
import os
from PIL import Image
from PIL import ImageOps
from PIL import Image, ImageDraw, ImageFont
from io import BytesIO
import requests

import gcsfs
fs = gcsfs.GCSFileSystem(project='createinsightsproject',token='anon')
fs.ls('trends_chrome_extension_bucket')
print('Started')
###download both text and image from cloud to display
with fs.open('trends_chrome_extension_bucket/lastradartext.txt', 'rb') as file:
    data_old = file.read()
print(data_old)
value1,value2,value3,value4,value5,value6=str(data_old.decode()).split('SEPERATOR')

img_data = requests.get('https://storage.googleapis.com/trends_chrome_extension_bucket/lasttechradar.png').content
with open('lasttechradar.png', 'wb') as handler:
    handler.write(img_data)

def getlastimage():
    #print('Came into getlastimage')
    img_data = requests.get('https://storage.googleapis.com/trends_chrome_extension_bucket/lasttechradar.png').content
    with open('lasttechradar1.png', 'wb') as handler:
        handler.write(img_data)

    with fs.open('trends_chrome_extension_bucket/lastradartext.txt', 'rb') as file:
        data_old = file.read()
    #print(data_old)
    value1,value2,value3,value4,value5,value6=str(data_old.decode()).split('SEPERATOR')
    return 'lasttechradar1.png',value1.strip(),value2.strip(),value3.strip(),value4.strip(),value5.strip(),value6.strip()


def getstuff(openapikey):
  dateforfilesave=datetime.today().strftime("%d-%m-%Y %I:%M%p")
  print(dateforfilesave)
  os.environ['OPENAI_API_KEY'] = str(openapikey)

  mainlistofanswers=[]
  for each in ['www.mckinsey.com','www.bcg.com','www.bain.com','www.accenture.com']:
    print(each)
    Input_URL = "https://"+each 
    documents = SimpleWebPageReader(html_to_text=True).load_data([Input_URL])
    index = GPTSimpleVectorIndex(documents)
    print('Came here 0')
    #@title # Creating your Langchain Agent
    def querying_db(query: str):
      response = index.query(query)
      return response

    tools = [
        Tool(
            name = "QueryingDB",
            func=querying_db,
            description="This function takes a query string as input and returns the most relevant answer from the documentation as output"
        )]
    llm = OpenAI(temperature=0,openai_api_key=openapikey)
    print('Came here 1')
    query_string = "what are the top technologies mentioned?" 

    agent = initialize_agent(tools, llm, agent="zero-shot-react-description", verbose=True)
    result = agent.run(query_string)
    mainlistofanswers.append(result)
  
  print('Came here 2')
  print(mainlistofanswers)
  newlistoftech=[]
  newlistofcompanies=[]
  for i in range(len(mainlistofanswers)):
    each=mainlistofanswers[i]
    each=each.replace("The top technologies mentioned are ","").replace("The technologies mentioned are ","")
    each=each.replace(":","").replace(" and ",",").replace("and ",",").replace(" and",",").replace(" the "," ").replace("the "," ").replace(" the"," ").strip()
    for item in each.split(","):
        if item!='':
          newlistoftech.append(item.strip())
          newlistofcompanies.append(i)
  tech_df=pd.DataFrame()
  tech_df['tech']=newlistoftech
  tech_df['company']=newlistofcompanies
  print(newlistoftech)
  print('Came here 3')
  embedding_model = "text-embedding-ada-002"
  embedding_encoding = "cl100k_base"  # this the encoding for text-embedding-ada-002
  max_tokens = 8000  # the maximum for text-embedding-ada-002 is 8191

  tech_df["embedding"] = tech_df['tech'].apply(lambda x: get_embedding(x, engine=embedding_model))

  print('Came here 4')

  # Load the embeddings

  # Convert to a list of lists of floats
  matrix = np.array(tech_df['embedding'].to_list())
  perplexityvalue=max(int(len(tech_df['embedding'].to_list()))/2,5) ###original value was a constant of 15
    
  # Create a t-SNE model and transform the data
  tsne = TSNE(n_components=2, perplexity=perplexityvalue, random_state=42, init='random', learning_rate=200)
  vis_dims = tsne.fit_transform(matrix)

  n_clusters = 5

  kmeans = KMeans(n_clusters=n_clusters, init="k-means++", random_state=42)
  kmeans.fit(matrix)
  labels = kmeans.labels_
  tech_df["Cluster"] = labels
  print('Came here 5')
  colors = ["red", "darkorange", "darkgrey", "blue", "darkgreen"]
  x = [x for x,y in vis_dims]
  y = [y for x,y in vis_dims]
  color_indices = tech_df['Cluster'].values 

  colormap = matplotlib.colors.ListedColormap(colors)
  #plt.scatter(x, y, c=color_indices, cmap=colormap, alpha=0.3,)
  fig, ax = plt.subplots(figsize=(12,8))
  ax.scatter(x, y, c=color_indices, cmap=colormap, alpha=1, s=100)

  for i, txt in enumerate(tech_df['tech'].tolist()):
      ax.annotate(txt, (x[i], y[i]),fontsize=14)

  plt.title("Top Technologies as of "+dateforfilesave,fontsize=20)
  plt.axis('off')
  plt.savefig('lasttechradar.png', bbox_inches='tight')
  print('Came here 6')
  response = openai.Completion.create(
        engine="text-davinci-003",
        prompt=f'I will give you top technologies list. Write a paragraph on it.\n\nTechnologies:'+",".join(tech_df['tech'].tolist()),
        temperature=0,
        max_tokens=1024,
        top_p=1,
        frequency_penalty=0,
        presence_penalty=0,
    )
  print(response["choices"][0]["text"].replace("\n", ""))
  desc_tmp=response["choices"][0]["text"].replace("\n", "")
  print('Came here 7')
  # Reading a review which belong to each group.
  rev_per_cluster = 5

  clusterstextlist=[]
  for i in range(n_clusters):
      print(f"Cluster {i} Theme:", end=" ")

      reviews = "\n".join(tech_df[tech_df['Cluster'] == i]['tech'].tolist())
      response = openai.Completion.create(
          engine="text-davinci-003",
          prompt=f'What do the following technologies have in common?\n\nCustomer reviews:\n"""\n{reviews}\n"""\n\nTheme:',
          temperature=0,
          max_tokens=64,
          top_p=1,
          frequency_penalty=0,
          presence_penalty=0,
      )
      print(response["choices"][0]["text"].replace("\n", ""))

      print(reviews)
      clusterstextlist.append("Cluster "+str(i)+"\nTheme:"+response["choices"][0]["text"].replace("\n", "")+'\n'+reviews+'\n'+"-" * 10+'\n\n')
  
  textlist=[mainlistofanswers[0],"SEPERATOR",mainlistofanswers[1],"SEPERATOR",mainlistofanswers[2],"SEPERATOR",mainlistofanswers[3],"SEPERATOR",desc_tmp,"SEPERATOR","".join(clusterstextlist)]
  ###create file with new info locally & upload to bucket
  with open('lastradartext.txt', 'w') as f:
    for line in textlist:
        f.write(f"{line}\n")
        
  with fs.open('trends_chrome_extension_bucket/lastradartext.txt', 'wb') as file:
      for line in textlist:
        file.write(f"{line}\n".encode())
          
  print('Came here 8')   

  ###read it and put in output

  with open('lastradartext.txt', 'r') as file:
    data_old = file.read()
  value1,value2,value3,value4,value5,value6=str(data_old).split('SEPERATOR')

  ###upload image to cloud for next run display
  with open('lasttechradar.png','rb') as image_file:
    image_string = image_file.read()
    with fs.open('trends_chrome_extension_bucket/lasttechradar.png', 'wb') as file:
        file.write(image_string)
    
  return 'lasttechradar.png',mainlistofanswers[0],mainlistofanswers[1],mainlistofanswers[2],mainlistofanswers[3],desc_tmp,"".join(clusterstextlist)

with gr.Blocks() as demo:
    gr.Markdown("<h1><center>ChatGPT Technology Radar</center></h1>")
    gr.Markdown(
        """What are the top technologies as of now? Let us query top consulting company websites & use ChatGPT to understand. \n\nShowcases ChatGPT integrated with real data. It shows how to get real-time data and marry it with ChatGPT capabilities. This demonstrates 'Chain of Thought' thinking using ChatGPT.\nLangChain & GPT-Index are both used."""
        )
    
    with gr.Row() as row:
      textboxopenapi = gr.Textbox(placeholder="Enter OpenAPI Key...", lines=1,label='OpenAPI Key')
      btn = gr.Button("Refresh")
    with gr.Row() as row:
      with gr.Column():
        output_image = gr.components.Image(label="Tech Radar",value='lasttechradar.png')    
      with gr.Column():
        outputMck = gr.Textbox(placeholder=value1, lines=1,label='McKinsey View')
        outputBcg = gr.Textbox(placeholder=value2, lines=1,label='BCG View')
        outputBain = gr.Textbox(placeholder=value3, lines=1,label='Bain View')
        outputAcc = gr.Textbox(placeholder=value4, lines=1,label='Accenture View')
    with gr.Row() as row:
      with gr.Column():
        outputdesc = gr.Textbox(placeholder=value5, lines=1,label='Description')
      with gr.Column():
        outputclusters = gr.Textbox(placeholder=value6, lines=1,label='Clusters')


    btn.click(getstuff, inputs=[textboxopenapi],outputs=[output_image,outputMck,outputBcg,outputBain,outputAcc,outputdesc,outputclusters])
    
    demo.load(getlastimage,[],[output_image,outputMck,outputBcg,outputBain,outputAcc,outputdesc,outputclusters])
    
demo.launch(debug=True)