File size: 7,502 Bytes
3f1766c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
from gpt_index import GPTListIndex, SimpleWebPageReader, BeautifulSoupWebReader, GPTSimpleVectorIndex,LLMPredictor
from IPython.display import Markdown, display
from langchain.agents import load_tools, Tool, initialize_agent
from langchain.llms import OpenAI
from langchain.agents import ZeroShotAgent, Tool, AgentExecutor
from langchain.agents import initialize_agent, Tool
from langchain import LLMChain
from langchain import PromptTemplate
import gradio as gr
import pandas as pd
import openai
from sklearn.manifold import TSNE
from sklearn.cluster import KMeans
from openai.embeddings_utils import get_embedding

import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import datetime
from datetime import datetime, date, time, timedelta

with open('lastradartext.txt', 'r') as file:
    data_old = file.read()
value1,value2,value3,value4,value5,value6=data_old.split('SEPERATOR')

def getstuff(openapikey):
  mainlistofanswers=[]
  for each in ['www.mckinsey.com','www.bcg.com','www.bain.com','www.accenture.com']:
    print(each)
    Input_URL = "https://"+each 
    documents = SimpleWebPageReader(html_to_text=True).load_data([Input_URL])
    index = GPTSimpleVectorIndex(documents)
    print('Came here 0')
    #@title # Creating your Langchain Agent
    def querying_db(query: str):
      response = index.query(query)
      return response

    tools = [
        Tool(
            name = "QueryingDB",
            func=querying_db,
            description="This function takes a query string as input and returns the most relevant answer from the documentation as output"
        )]
    llm = OpenAI(temperature=0,openai_api_key=openapikey)
    print('Came here 1')
    query_string = "what are the top technologies mentioned?" 

    agent = initialize_agent(tools, llm, agent="zero-shot-react-description", verbose=True)
    result = agent.run(query_string)
    mainlistofanswers.append(result)
  
  print('Came here 2')
  newlistoftech=[]
  newlistofcompanies=[]
  for i in range(len(mainlistofanswers)):
    each=mainlistofanswers[i]
    each=each.replace("The top technologies mentioned are ","").replace("The technologies mentioned are ","")
    each=each.replace(":","").replace(" and "," ").replace("and "," ").replace(" and"," ").replace(" the "," ").replace("the "," ").replace(" the"," ").strip()
    for item in each.split(","):
      newlistoftech.append(item.strip())
      newlistofcompanies.append(i)
  tech_df=pd.DataFrame()
  tech_df['tech']=newlistoftech
  tech_df['company']=newlistofcompanies
  print('Came here 3')
  embedding_model = "text-embedding-ada-002"
  embedding_encoding = "cl100k_base"  # this the encoding for text-embedding-ada-002
  max_tokens = 8000  # the maximum for text-embedding-ada-002 is 8191

  tech_df["embedding"] = tech_df['tech'].apply(lambda x: get_embedding(x, engine=embedding_model))

  
  print('Came here 4')
  dateforfilesave=datetime.today().strftime("%d-%m-%Y")

  # Load the embeddings

  # Convert to a list of lists of floats
  matrix = np.array(tech_df['embedding'].to_list())

  # Create a t-SNE model and transform the data
  tsne = TSNE(n_components=2, perplexity=15, random_state=42, init='random', learning_rate=200)
  vis_dims = tsne.fit_transform(matrix)

  n_clusters = 5

  kmeans = KMeans(n_clusters=n_clusters, init="k-means++", random_state=42)
  kmeans.fit(matrix)
  labels = kmeans.labels_
  tech_df["Cluster"] = labels
  print('Came here 5')
  colors = ["red", "darkorange", "darkgrey", "blue", "darkgreen"]
  x = [x for x,y in vis_dims]
  y = [y for x,y in vis_dims]
  color_indices = tech_df['Cluster'].values 

  colormap = matplotlib.colors.ListedColormap(colors)
  #plt.scatter(x, y, c=color_indices, cmap=colormap, alpha=0.3,)
  fig, ax = plt.subplots(figsize=(12,8))
  ax.scatter(x, y, c=color_indices, cmap=colormap, alpha=1, s=100)

  for i, txt in enumerate(tech_df['tech'].tolist()):
      ax.annotate(txt, (x[i], y[i]),fontsize=14)

  plt.title("Top Technologies as of "+dateforfilesave,fontsize=20)
  plt.axis('off')
  plt.savefig('lasttechradar.png', bbox_inches='tight')
  print('Came here 6')
  response = openai.Completion.create(
        engine="text-davinci-003",
        prompt=f'I will give you top technologies list. Write a paragraph on it.\n\nTechnologies:'+",".join(tech_df['tech'].tolist()),
        temperature=0,
        max_tokens=1024,
        top_p=1,
        frequency_penalty=0,
        presence_penalty=0,
    )
  print(response["choices"][0]["text"].replace("\n", ""))
  desc_tmp=response["choices"][0]["text"].replace("\n", "")
  print('Came here 7')
  # Reading a review which belong to each group.
  rev_per_cluster = 5

  clusterstextlist=[]
  for i in range(n_clusters):
      print(f"Cluster {i} Theme:", end=" ")

      reviews = "\n".join(tech_df[tech_df['Cluster'] == i]['tech'].tolist())
      response = openai.Completion.create(
          engine="text-davinci-003",
          prompt=f'What do the following technologies have in common?\n\nCustomer reviews:\n"""\n{reviews}\n"""\n\nTheme:',
          temperature=0,
          max_tokens=64,
          top_p=1,
          frequency_penalty=0,
          presence_penalty=0,
      )
      print(response["choices"][0]["text"].replace("\n", ""))

      print(reviews)
      clusterstextlist.append("Cluster "+str(i)+"\nTheme:"+response["choices"][0]["text"].replace("\n", "")+'\n'+reviews+'\n'+"-" * 10+'\n\n')
  
  textlist=[mainlistofanswers[0],"SEPERATOR",mainlistofanswers[1],"SEPERATOR",mainlistofanswers[2],"SEPERATOR",mainlistofanswers[3],"SEPERATOR",desc_tmp,"SEPERATOR","".join(clusterstextlist)]
  with open('lastradartext.txt', 'w') as f:
    for line in textlist:
        f.write(f"{line}\n")
  print('Came here 8')      
  with open('lastradartext.txt', 'r') as file:
    data_old = file.read()
  value1,value2,value3,value4,value5,value6=data_old.split('SEPERATOR')
  return 'lasttechradar.png',mainlistofanswers[0],mainlistofanswers[1],mainlistofanswers[2],mainlistofanswers[3],desc_tmp,"".join(clusterstextlist)

with gr.Blocks() as demo:
    gr.Markdown("<h1><center>ChatGPT Technology Radar</center></h1>")
    gr.Markdown(
        """What are the top technologies as of now? Let us query top consulting websites & use ChatGPT to understand. This demonstrates 'Chain of Thought' thinking using ChatGPT. It also shows how to get real time data and marry it with ChatGPT capabilities.\n LangChain & GPT-Index are both used."""
        )
    
    with gr.Row() as row:
      textboxopenapi = gr.Textbox(placeholder="Enter OpenAPI Key...", lines=1,label='OpenAPI Key')
      btn = gr.Button("Refresh")
    with gr.Row() as row:
      with gr.Column():
        output_image = gr.components.Image(label="Tech Radar",value='lasttechradar.png')    
      with gr.Column():
        outputMck = gr.Textbox(placeholder=value1, lines=1,label='McKinsey View')
        outputBcg = gr.Textbox(placeholder=value2, lines=1,label='BCG View')
        outputBain = gr.Textbox(placeholder=value3, lines=1,label='Bain View')
        outputAcc = gr.Textbox(placeholder=value4, lines=1,label='Accenture View')
    with gr.Row() as row:
      with gr.Column():
        outputdesc = gr.Textbox(placeholder=value5, lines=1,label='Description')
      with gr.Column():
        outputclusters = gr.Textbox(placeholder=value6, lines=1,label='Clusters')


    btn.click(getstuff, inputs=[textboxopenapi],outputs=[output_image,outputMck,outputBcg,outputBain,outputAcc,outputdesc,outputclusters])
    

demo.launch(debug=True)