Spaces:
Runtime error
Runtime error
File size: 7,502 Bytes
3f1766c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
from gpt_index import GPTListIndex, SimpleWebPageReader, BeautifulSoupWebReader, GPTSimpleVectorIndex,LLMPredictor
from IPython.display import Markdown, display
from langchain.agents import load_tools, Tool, initialize_agent
from langchain.llms import OpenAI
from langchain.agents import ZeroShotAgent, Tool, AgentExecutor
from langchain.agents import initialize_agent, Tool
from langchain import LLMChain
from langchain import PromptTemplate
import gradio as gr
import pandas as pd
import openai
from sklearn.manifold import TSNE
from sklearn.cluster import KMeans
from openai.embeddings_utils import get_embedding
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import datetime
from datetime import datetime, date, time, timedelta
with open('lastradartext.txt', 'r') as file:
data_old = file.read()
value1,value2,value3,value4,value5,value6=data_old.split('SEPERATOR')
def getstuff(openapikey):
mainlistofanswers=[]
for each in ['www.mckinsey.com','www.bcg.com','www.bain.com','www.accenture.com']:
print(each)
Input_URL = "https://"+each
documents = SimpleWebPageReader(html_to_text=True).load_data([Input_URL])
index = GPTSimpleVectorIndex(documents)
print('Came here 0')
#@title # Creating your Langchain Agent
def querying_db(query: str):
response = index.query(query)
return response
tools = [
Tool(
name = "QueryingDB",
func=querying_db,
description="This function takes a query string as input and returns the most relevant answer from the documentation as output"
)]
llm = OpenAI(temperature=0,openai_api_key=openapikey)
print('Came here 1')
query_string = "what are the top technologies mentioned?"
agent = initialize_agent(tools, llm, agent="zero-shot-react-description", verbose=True)
result = agent.run(query_string)
mainlistofanswers.append(result)
print('Came here 2')
newlistoftech=[]
newlistofcompanies=[]
for i in range(len(mainlistofanswers)):
each=mainlistofanswers[i]
each=each.replace("The top technologies mentioned are ","").replace("The technologies mentioned are ","")
each=each.replace(":","").replace(" and "," ").replace("and "," ").replace(" and"," ").replace(" the "," ").replace("the "," ").replace(" the"," ").strip()
for item in each.split(","):
newlistoftech.append(item.strip())
newlistofcompanies.append(i)
tech_df=pd.DataFrame()
tech_df['tech']=newlistoftech
tech_df['company']=newlistofcompanies
print('Came here 3')
embedding_model = "text-embedding-ada-002"
embedding_encoding = "cl100k_base" # this the encoding for text-embedding-ada-002
max_tokens = 8000 # the maximum for text-embedding-ada-002 is 8191
tech_df["embedding"] = tech_df['tech'].apply(lambda x: get_embedding(x, engine=embedding_model))
print('Came here 4')
dateforfilesave=datetime.today().strftime("%d-%m-%Y")
# Load the embeddings
# Convert to a list of lists of floats
matrix = np.array(tech_df['embedding'].to_list())
# Create a t-SNE model and transform the data
tsne = TSNE(n_components=2, perplexity=15, random_state=42, init='random', learning_rate=200)
vis_dims = tsne.fit_transform(matrix)
n_clusters = 5
kmeans = KMeans(n_clusters=n_clusters, init="k-means++", random_state=42)
kmeans.fit(matrix)
labels = kmeans.labels_
tech_df["Cluster"] = labels
print('Came here 5')
colors = ["red", "darkorange", "darkgrey", "blue", "darkgreen"]
x = [x for x,y in vis_dims]
y = [y for x,y in vis_dims]
color_indices = tech_df['Cluster'].values
colormap = matplotlib.colors.ListedColormap(colors)
#plt.scatter(x, y, c=color_indices, cmap=colormap, alpha=0.3,)
fig, ax = plt.subplots(figsize=(12,8))
ax.scatter(x, y, c=color_indices, cmap=colormap, alpha=1, s=100)
for i, txt in enumerate(tech_df['tech'].tolist()):
ax.annotate(txt, (x[i], y[i]),fontsize=14)
plt.title("Top Technologies as of "+dateforfilesave,fontsize=20)
plt.axis('off')
plt.savefig('lasttechradar.png', bbox_inches='tight')
print('Came here 6')
response = openai.Completion.create(
engine="text-davinci-003",
prompt=f'I will give you top technologies list. Write a paragraph on it.\n\nTechnologies:'+",".join(tech_df['tech'].tolist()),
temperature=0,
max_tokens=1024,
top_p=1,
frequency_penalty=0,
presence_penalty=0,
)
print(response["choices"][0]["text"].replace("\n", ""))
desc_tmp=response["choices"][0]["text"].replace("\n", "")
print('Came here 7')
# Reading a review which belong to each group.
rev_per_cluster = 5
clusterstextlist=[]
for i in range(n_clusters):
print(f"Cluster {i} Theme:", end=" ")
reviews = "\n".join(tech_df[tech_df['Cluster'] == i]['tech'].tolist())
response = openai.Completion.create(
engine="text-davinci-003",
prompt=f'What do the following technologies have in common?\n\nCustomer reviews:\n"""\n{reviews}\n"""\n\nTheme:',
temperature=0,
max_tokens=64,
top_p=1,
frequency_penalty=0,
presence_penalty=0,
)
print(response["choices"][0]["text"].replace("\n", ""))
print(reviews)
clusterstextlist.append("Cluster "+str(i)+"\nTheme:"+response["choices"][0]["text"].replace("\n", "")+'\n'+reviews+'\n'+"-" * 10+'\n\n')
textlist=[mainlistofanswers[0],"SEPERATOR",mainlistofanswers[1],"SEPERATOR",mainlistofanswers[2],"SEPERATOR",mainlistofanswers[3],"SEPERATOR",desc_tmp,"SEPERATOR","".join(clusterstextlist)]
with open('lastradartext.txt', 'w') as f:
for line in textlist:
f.write(f"{line}\n")
print('Came here 8')
with open('lastradartext.txt', 'r') as file:
data_old = file.read()
value1,value2,value3,value4,value5,value6=data_old.split('SEPERATOR')
return 'lasttechradar.png',mainlistofanswers[0],mainlistofanswers[1],mainlistofanswers[2],mainlistofanswers[3],desc_tmp,"".join(clusterstextlist)
with gr.Blocks() as demo:
gr.Markdown("<h1><center>ChatGPT Technology Radar</center></h1>")
gr.Markdown(
"""What are the top technologies as of now? Let us query top consulting websites & use ChatGPT to understand. This demonstrates 'Chain of Thought' thinking using ChatGPT. It also shows how to get real time data and marry it with ChatGPT capabilities.\n LangChain & GPT-Index are both used."""
)
with gr.Row() as row:
textboxopenapi = gr.Textbox(placeholder="Enter OpenAPI Key...", lines=1,label='OpenAPI Key')
btn = gr.Button("Refresh")
with gr.Row() as row:
with gr.Column():
output_image = gr.components.Image(label="Tech Radar",value='lasttechradar.png')
with gr.Column():
outputMck = gr.Textbox(placeholder=value1, lines=1,label='McKinsey View')
outputBcg = gr.Textbox(placeholder=value2, lines=1,label='BCG View')
outputBain = gr.Textbox(placeholder=value3, lines=1,label='Bain View')
outputAcc = gr.Textbox(placeholder=value4, lines=1,label='Accenture View')
with gr.Row() as row:
with gr.Column():
outputdesc = gr.Textbox(placeholder=value5, lines=1,label='Description')
with gr.Column():
outputclusters = gr.Textbox(placeholder=value6, lines=1,label='Clusters')
btn.click(getstuff, inputs=[textboxopenapi],outputs=[output_image,outputMck,outputBcg,outputBain,outputAcc,outputdesc,outputclusters])
demo.launch(debug=True) |