hotchpotch's picture
impl
2569947
raw
history blame
9.38 kB
"""
streamlit run app.py --server.address 0.0.0.0
"""
from __future__ import annotations
import streamlit as st
import os
import faiss
from sentence_transformers import SentenceTransformer
import torch
from openai import OpenAI
import streamlit as st
import pandas as pd
import os
from time import time
from datasets.download import DownloadManager
from datasets import load_dataset # type: ignore
WIKIPEDIA_JA_DS = "singletongue/wikipedia-utils"
WIKIPEDIA_JS_DS_NAME = "passages-c400-jawiki-20230403"
WIKIPEDIA_JA_EMB_DS = "hotchpotch/wikipedia-passages-jawiki-embeddings"
EMB_MODEL_PQ = {
"intfloat/multilingual-e5-small": 96,
"intfloat/multilingual-e5-base": 192,
"intfloat/multilingual-e5-large": 256,
"cl-nagoya/sup-simcse-ja-base": 192,
"pkshatech/GLuCoSE-base-ja": 192,
}
EMB_MODEL_NAMES = list(EMB_MODEL_PQ.keys())
OPENAI_MODEL_NAMES = [
"gpt-3.5-turbo-1106",
"gpt-4-1106-preview",
]
E5_QUERY_TYPES = [
"passage",
"query",
]
DEFAULT_QA_PROMPT = """
## Instruction
Prepare an explanatory statement for the question, including as much detailed explanation as possible.
Avoid speculations or information not contained in the contexts. Heavily favor knowledge provided in the documents before falling back to baseline knowledge or other contexts. If searching the contexts didn"t yield any answer, just say that.
Responses must be given in Japanese.
## Contexts
{contexts}
## Question
{question}
""".strip()
if os.getenv("SPACE_ID"):
USE_HF_SPACE = True
os.environ["HF_HOME"] = "/data/.huggingface"
else:
USE_HF_SPACE = False
# for tokenizer
os.environ["TOKENIZERS_PARALLELISM"] = "false"
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
@st.cache_data
def get_model(name: str, max_seq_length=512):
device = "cpu"
if torch.cuda.is_available():
device = "cuda"
elif torch.backends.mps.is_available():
device = "mps"
model = SentenceTransformer(name, device=device)
model.max_seq_length = max_seq_length
return model
@st.cache_data
def get_wikija_ds(name: str = WIKIPEDIA_JS_DS_NAME):
ds = load_dataset(path=WIKIPEDIA_JA_DS, name=name, split="train")
return ds
@st.cache_data
def get_faiss_index(
index_name: str, ja_emb_ds: str = WIKIPEDIA_JA_EMB_DS, name=WIKIPEDIA_JS_DS_NAME
):
target_path = f"faiss_indexes/{name}/{index_name}"
dm = DownloadManager()
index_local_path = dm.download(
f"https://huggingface.co/datasets/{ja_emb_ds}/resolve/main/{target_path}"
)
index = faiss.read_index(index_local_path)
index.nprobe = 128
return index
def text_to_emb(model, text: str, prefix: str):
return model.encode([prefix + text], normalize_embeddings=True)
def search(
faiss_index, emb_model, ds, question: str, search_text_prefix: str, top_k: int
):
start_time = time()
emb = text_to_emb(emb_model, question, search_text_prefix)
emb_exec_time = time() - start_time
scores, indexes = faiss_index.search(emb, top_k)
faiss_seartch_time = time() - emb_exec_time - start_time
scores = scores[0]
indexes = indexes[0]
results = []
for idx, score in zip(indexes, scores): # type: ignore
idx = int(idx)
passage = ds[idx]
results.append((score, passage))
return results, emb_exec_time, faiss_seartch_time
def to_contexts(passages):
contexts = ""
for passage in passages:
title = passage["title"]
text = passage["text"]
# section = passage["section"]
contexts += f"- {title}: {text}\n"
return contexts
def qa(
question: str,
passages: list,
model_name: str,
temperature: int,
qa_prompt: str,
max_tokens=2000,
):
client = OpenAI()
contexts = to_contexts(passages)
prompt = qa_prompt.format(contexts=contexts, question=question)
response = client.chat.completions.create(
model=model_name,
messages=[
{"role": "user", "content": prompt},
],
stream=True,
temperature=temperature,
max_tokens=max_tokens,
seed=42,
)
for chunk in response:
delta = chunk.choices[0].delta
yield delta.content or ""
def generate_answer(
buf, question, passages, model_name, temperature, qa_prompt, max_tokens
):
buf.write("⏳回答の生成中...")
texts = ""
for char in qa(
question=question,
passages=passages,
model_name=model_name,
temperature=temperature,
qa_prompt=qa_prompt,
):
texts += char
buf.write(texts)
def to_df(scores, passages):
df = pd.DataFrame(passages)
df["text"] = df["text"]
df["score"] = scores
df_rows = ["score", "title", "text", "section"]
df = df[df_rows]
return df
def app():
st.title("Wikipedia 日本語 RAG 検索")
st.subheader("⭐️大元へのリンクを貼る")
st.text_area(
"Question",
key="question",
value="1975年に『アザミ嬢のララバイ』でデビューした女性歌手で、『わかれうた』『地上の星』などの曲を出しているのは誰?",
)
if not OPENAI_API_KEY:
st.text_input(
"OpenAI API Key",
key="openai_api_key",
type="password",
placeholder="※ API_KEY 未入力時は、回答生成せずに検索のみ",
)
else:
st.session_state.openai_api_key = OPENAI_API_KEY
with st.expander("オプション"):
option_cols_main = st.columns(2)
with option_cols_main[0]:
st.selectbox("Emb Model", EMB_MODEL_NAMES, index=0, key="emb_model_name")
with option_cols_main[1]:
st.selectbox(
"OpenAI Model", OPENAI_MODEL_NAMES, index=0, key="openai_model_name"
)
emb_model_name = st.session_state.emb_model_name
option_cols_sub = st.columns(2)
with option_cols_sub[0]:
st.number_input("Top K", value=5, key="top_k", min_value=1, max_value=20)
with option_cols_sub[1]:
if "-e5-" in emb_model_name:
st.radio(
"Passage or Query (only e5)",
E5_QUERY_TYPES,
index=0,
key="e5_query_or_passage",
horizontal=True,
)
e5_query_or_passage = st.session_state.e5_query_or_passage
index_emb_model_name = (
f"{emb_model_name.split('/')[-1]}-{e5_query_or_passage}"
)
search_text_prefix = f"{e5_query_or_passage}: "
else:
index_emb_model_name = emb_model_name.split("/")[-1]
search_text_prefix = ""
option_cols = st.columns(3)
with option_cols[0]:
st.slider("Temperature", 0.0, 1.0, value=0.8, key="temperature")
with option_cols[1]:
st.slider("nprobe", 16, 1024, value=128, key="nprobe")
with option_cols[2]:
st.number_input(
"max_tokens", value=2000, key="max_tokens", min_value=1, max_value=16000
)
st.text_area("QA Prompt", value=DEFAULT_QA_PROMPT, key="qa_prompt")
loading_placeholder = st.empty()
loading_placeholder.text("⏳ Loading - Embedding Model...")
emb_model = get_model(st.session_state.emb_model_name)
loading_placeholder.text("⏳ Loading - Faiss Index...")
emb_model_pq = EMB_MODEL_PQ[emb_model_name]
index_name = f"{index_emb_model_name}/index_IVF2048_PQ{emb_model_pq}.faiss"
faiss_index = get_faiss_index(index_name=index_name)
faiss_index.nprobe = st.session_state.nprobe
loading_placeholder.text("⏳ Loading - Huggingface Dataset...")
ds = get_wikija_ds()
loading_placeholder.empty()
if st.button("Search"):
answer_header = st.empty()
answer_text_buffer = st.empty()
question = st.session_state.question
top_k = st.session_state.top_k
scores = []
passages = []
search_results, emb_exec_time, faiss_seartch_time = search(
faiss_index,
emb_model,
ds,
question,
search_text_prefix=search_text_prefix,
top_k=top_k,
)
st.subheader("Search Results: ")
st.write(
f"⏱️ generate embedding: {emb_exec_time*1000:.2f}ms / faiss search: {faiss_seartch_time*1000:.2f}ms"
)
for score, passage in search_results:
scores.append(score)
passages.append(passage)
df = to_df(scores, passages)
st.dataframe(df, hide_index=True)
openai_api_key = st.session_state.openai_api_key
if openai_api_key:
answer_header.subheader("Answer: ")
openai_model_name = st.session_state.openai_model_name
temperature = st.session_state.temperature
qa_prompt = st.session_state.qa_prompt
max_tokens = st.session_state.max_tokens
generate_answer(
buf=answer_text_buffer,
question=question,
passages=passages,
model_name=openai_model_name,
temperature=temperature,
qa_prompt=qa_prompt,
max_tokens=max_tokens,
)
if __name__ == "__main__":
app()