""" streamlit run app.py --server.address 0.0.0.0 """ from __future__ import annotations import os from time import time import faiss import pandas as pd import streamlit as st from open_clip import create_model_and_transforms from openai import OpenAI from qdrant_client import QdrantClient from qdrant_client.http import models if os.getenv("SPACE_ID"): USE_HF_SPACE = True os.environ["HF_HOME"] = "/data/.huggingface" os.environ["HF_DATASETS_CACHE"] = "/data/.huggingface" else: USE_HF_SPACE = False # for tokenizer os.environ["TOKENIZERS_PARALLELISM"] = "false" OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY") QDRANT_API_ENDPOINT = os.environ.get("QDRANT_API_ENDPOINT") QDRANT_API_KEY = os.environ.get("QDRANT_API_KEY") if not QDRANT_API_ENDPOINT or not QDRANT_API_KEY: raise ValueError("env: QDRANT_API_ENDPOINT or QDRANT_API_KEY is not set.") @st.cache_resource def get_model_preprocess(): model, _, preprocess = create_model_and_transforms( "xlm-roberta-base-ViT-B-32", pretrained="laion5B-s13B-b90k" ) return model, preprocess @st.cache_resource def get_qdrant_client(): qdrant_client = QdrantClient( url=QDRANT_API_ENDPOINT, api_key=QDRANT_API_KEY, ) return qdrant_client def app(): st.title("secon.dev site search") if __name__ == "__main__": app()