Spaces:
Runtime error
Runtime error
| import requests | |
| import pandas as pd | |
| from tqdm.auto import tqdm | |
| import gradio as gr | |
| from huggingface_hub import HfApi, hf_hub_download | |
| from huggingface_hub.repocard import metadata_load | |
| # Based on Omar Sanseviero work | |
| # Make model clickable link | |
| def make_clickable_model(model_name): | |
| link = "https://huggingface.co/" + model_name | |
| return f'<a style="text-decoration: underline; color: #1f3b54 " target="_blank" href="{link}">{model_name}</a>' | |
| # Make user clickable link | |
| def make_clickable_user(user_id): | |
| link = "https://huggingface.co/" + user_id | |
| return f'<a style="text-decoration: underline; color: #1f3b54 " target="_blank" href="{link}">{user_id}</a>' | |
| def get_model_ids(rl_env): | |
| api = HfApi() | |
| models = api.list_models(filter=rl_env) | |
| model_ids = [x.modelId for x in models] | |
| return model_ids | |
| def get_metadata(model_id): | |
| try: | |
| readme_path = hf_hub_download(model_id, filename="README.md") | |
| return metadata_load(readme_path) | |
| except requests.exceptions.HTTPError: | |
| # 404 README.md not found | |
| return None | |
| def parse_metrics_accuracy(meta): | |
| if "model-index" not in meta: | |
| return None | |
| result = meta["model-index"][0]["results"] | |
| metrics = result[0]["metrics"] | |
| accuracy = metrics[0]["value"] | |
| print("ACCURACY", accuracy) | |
| return accuracy | |
| # We keep the worst case episode | |
| def parse_rewards(accuracy): | |
| if accuracy != None: | |
| parsed = accuracy.split(' +/- ') | |
| mean_reward = float(parsed[0]) | |
| std_reward = float(parsed[1]) | |
| else: | |
| mean_reward = -1000 | |
| std_reward = -1000 | |
| return mean_reward, std_reward | |
| def get_data(rl_env): | |
| data = [] | |
| model_ids = get_model_ids(rl_env) | |
| for model_id in tqdm(model_ids): | |
| meta = get_metadata(model_id) | |
| if meta is None: | |
| continue | |
| user_id = model_id.split('/')[0] | |
| row = {} | |
| row["User"] = user_id | |
| row["Model"] = model_id | |
| accuracy = parse_metrics_accuracy(meta) | |
| print("RETURNED ACCURACY", accuracy) | |
| mean_reward, std_reward = parse_rewards(accuracy) | |
| print("MEAN REWARD", mean_reward) | |
| row["Results"] = mean_reward - std_reward | |
| row["Mean Reward"] = mean_reward | |
| row["Std Reward"] = std_reward | |
| data.append(row) | |
| return pd.DataFrame.from_records(data) | |
| def get_data_per_env(rl_env): | |
| dataframe = get_data(rl_env) | |
| dataframe = dataframe.fillna("") | |
| if not dataframe.empty: | |
| # turn the model ids into clickable links | |
| dataframe["User"] = dataframe["User"].apply(make_clickable_user) | |
| dataframe["Model"] = dataframe["Model"].apply(make_clickable_model) | |
| dataframe = dataframe.sort_values(by=['Results'], ascending=False) | |
| table_html = dataframe.to_html(escape=False, index=False) | |
| table_html = table_html.replace("<table>", '<table style="width: 100%; margin: auto; border:0.5px solid; border-spacing: 7px 0px">') # center-align the headers | |
| table_html = table_html.replace("<thead>", '<thead align="center">') # center-align the headers | |
| table_html = "<div style='text-align: center ; width:100%'>"+table_html+"</div>" | |
| return table_html,dataframe,dataframe.empty | |
| else: | |
| html = """<div style="color: green"> | |
| <p> ⌛ Please wait. Results will be out soon... </p> | |
| </div> | |
| """ | |
| return html,dataframe,dataframe.empty | |
| RL_ENVS = ['LunarLander-v2','CarRacing-v0','MountainCar-v0'] | |
| RL_DETAILS ={'CarRacing-v0':{'title':" The Car Racing 🏎️ Leaderboard 🚀",'data':get_data_per_env('CarRacing-v0')}, | |
| 'MountainCar-v0':{'title':"The Mountain Car ⛰️ 🚗 Leaderboard 🚀",'data':get_data_per_env('MountainCar-v0')}, | |
| 'LunarLander-v2':{'title':" The Lunar Lander 🌕 Leaderboard 🚀",'data':get_data_per_env('LunarLander-v2')} | |
| } | |
| block = gr.Blocks() | |
| with block: | |
| with gr.Tabs(): | |
| for rl_env in RL_ENVS: | |
| with gr.TabItem(rl_env): | |
| data_html,data_dataframe,is_empty = RL_DETAILS[rl_env]['data'] | |
| if not is_empty: | |
| markdown = """ | |
| # {name_leaderboard} | |
| This is a leaderboard of **{len_dataframe}** agents playing {env_name} 👩🚀. | |
| We use lower bound result to sort the models: mean_reward - std_reward. | |
| You can click on the model's name to be redirected to its model card which includes documentation. | |
| You want to try your model? Read this [Unit 1](https://github.com/huggingface/deep-rl-class/blob/Unit1/unit1/README.md) of Deep Reinforcement Learning Class. | |
| """.format(len_dataframe = len(data_dataframe),env_name = rl_env,name_leaderboard = RL_DETAILS[rl_env]['title']) | |
| else: | |
| markdown = """ | |
| # {name_leaderboard} | |
| """.format(name_leaderboard = RL_DETAILS[rl_env]['title']) | |
| gr.Markdown(markdown) | |
| gr.HTML(data_html) | |
| block.launch() | |