File size: 8,909 Bytes
7713b1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import torch
import numpy as np
from nltk.corpus import wordnet


def find_synonyms(keyword):
    synonyms = []
    for synset in wordnet.synsets(keyword):
        for lemma in synset.lemmas():
            if len(lemma.name().split("_")) > 1 or len(lemma.name().split("-")) > 1:
                continue
            synonyms.append(lemma.name())
    return list(set(synonyms))

def find_tokens_synonyms(tokens):
    out = []
    for token in tokens:
        words = find_synonyms(token.replace("Ġ", "").replace("_", "").replace("#", ""))
        if len(words) == 0:
            out.append([token])
        else:
            out.append(words)
    return out

def hotflip_attack(averaged_grad, embedding_matrix, increase_loss=False, cand_num=1, filter=None):
    """Returns the top candidate replacements."""
    with torch.no_grad():
        gradient_dot_embedding_matrix = torch.matmul(
            embedding_matrix,
            averaged_grad
        )
        if filter is not None:
            gradient_dot_embedding_matrix -= filter
        if not increase_loss:
            gradient_dot_embedding_matrix *= -1
        _, top_k_ids = gradient_dot_embedding_matrix.topk(cand_num)
    return top_k_ids


def replace_tokens(model_inputs, source_id, target_ids, idx=None):
    """
    replace [T] [K] to specify tokens
    :param model_inputs:
    :param source_id:
    :param target_ids:
    :param idx:
    :return:
    """
    out = model_inputs.copy()
    device = out["input_ids"].device
    idx = idx if idx is not None else np.arange(len(model_inputs["input_ids"]))
    tmp_input_ids = model_inputs['input_ids'][idx]
    source_mask = tmp_input_ids.eq(source_id)
    target_matrix = target_ids.repeat(len(idx), 1).to(device)
    try:
        filled = tmp_input_ids.masked_scatter_(source_mask, target_matrix).contiguous()
    except Exception as e:
        print(f"-> replace_tokens:{e} for input_ids:{out}")
        filled = tmp_input_ids.cpu()
    out['input_ids'][idx] = filled
    return out


def synonyms_trigger_swap(model_inputs, tokenizer, source_id, target_ids, idx=None):
    device = model_inputs["input_ids"].device
    # 获取单词
    triggers = tokenizer.convert_ids_to_tokens(target_ids[0].detach().cpu().tolist())
    # 查找同义词
    trigger_synonyms = find_tokens_synonyms(triggers)

    new_triggers = []
    for tidx, t_synonyms in enumerate(trigger_synonyms):
        ridx = np.random.choice(len(t_synonyms), 1)[0]
        new_triggers.append(t_synonyms[ridx])
    triggers_ids = tokenizer.convert_tokens_to_ids(new_triggers)
    triggers_ids = torch.tensor(triggers_ids, device=device).long().unsqueeze(0)
    #print(f"-> source:{triggers}\n-> synonyms:{trigger_synonyms}\n-> new_triggers:{new_triggers} triggers_ids:{triggers_ids[0]}")

    '''
    # 查找model输入同义词
    input_ids = model_inputs["input_ids"].detach().cpu().tolist()
    attention_mask = model_inputs["attention_mask"].detach().cpu()

    for sentence, mask in zip(input_ids, attention_mask):
        num = mask.sum()
        sentence = sentence[:num]
        sentence_synonyms = find_tokens_synonyms(sentence)

        # do swap
        for sidx, word_synonyms in enumerate(sentence_synonyms):
            for tidx, t_synonyms in enumerate(trigger_synonyms):
                flag = list(set(word_synonyms) & set(t_synonyms))
                if flag:
                    tmp = t_synonyms[sidx][-1]
                    sentence[sidx] = t_synonyms[tidx][-1]
                    t_synonyms[tidx] = tmp
    '''

    out = model_inputs.copy()
    device = out["input_ids"].device
    idx = idx if idx is not None else np.arange(len(model_inputs["input_ids"]))
    tmp_input_ids = model_inputs['input_ids'][idx]
    source_mask = tmp_input_ids.eq(source_id)
    tarigger_data = target_ids.repeat(len(idx), 1).to(device)
    try:
        filled = tmp_input_ids.masked_scatter_(source_mask, tarigger_data).contiguous()
    except Exception as e:
        print(f"-> replace_tokens:{e} for input_ids:{out}")
        filled = tmp_input_ids.cpu()

    input_ids = filled
    bsz = model_inputs["attention_mask"].shape[0]
    max_num = model_inputs["attention_mask"].sum(dim=1).detach().cpu().min() - 1

    # no replace shuffle
    shuffle_mask = torch.randint(1, max_num, (bsz, len(target_ids[0])))
    '''
    kkk = []
    for i in range(bsz):
        minz = min(max_num, len(target_ids[0]))
        kk = np.random.choice(max_num, minz, replace=False)
        kkk.append(kk)
    shuffle_mask = torch.tensor(kkk, device=device).long()
    '''

    shuffle_data = input_ids.gather(-1, shuffle_mask)
    input_ids = input_ids.masked_scatter_(source_mask, shuffle_data).contiguous()
    input_ids = input_ids.scatter_(-1, shuffle_mask, tarigger_data)
    out['input_ids'][idx] = input_ids
    return out




def append_tokens(model_inputs, tokenizer, token_id, token, token_num, idx=None, pos="prefix"):
    """
    add tokens into model_inputs
    :param model_inputs:
    :param token_ids:
    :param token_num:
    :param idx:
    :param prefix:
    :return:
    """
    out = model_inputs.copy()
    device = out["input_ids"].device
    idx = idx if idx is not None else np.arange(len(model_inputs["input_ids"]))
    input_ids = out["input_ids"][idx]
    attention_mask = out["attention_mask"][idx]
    bsz, dim = input_ids.shape[0], input_ids.shape[-1]

    if len(input_ids.shape) > 2:
        out_part2 = {}
        out_part2["input_ids"] = input_ids[:, 1:2].clone().view(-1, dim)
        out_part2["attention_mask"] = attention_mask[:, 1:2].clone().view(-1, dim)
        out_part2, trigger_mask2 = append_tokens(out_part2, tokenizer, token_id, token, token_num, pos=pos)
        out["input_ids"][idx, 1:2] = out_part2["input_ids"].view(-1, 1, dim).contiguous().clone()
        out["attention_mask"][idx, 1:2] = out_part2["attention_mask"].view(-1, 1, dim).contiguous().clone()
        trigger_mask = torch.cat([torch.zeros([bsz, dim]), trigger_mask2], dim=1).view(-1, dim)
        return out, trigger_mask.bool().contiguous()

    text = "".join(np.repeat(token, token_num).tolist())
    dummy_inputs = tokenizer(text)
    if pos == "prefix":
        if "gpt" in tokenizer.name_or_path or "opt" in tokenizer.name_or_path or "llama" in tokenizer.name_or_path:
            dummy_ids = torch.tensor(dummy_inputs["input_ids"]).repeat(bsz, 1).to(device)
            dummy_mask = torch.tensor(dummy_inputs["attention_mask"]).repeat(bsz, 1).to(device)
            out["input_ids"][idx] = torch.cat([dummy_ids, input_ids], dim=1)[:, :dim].contiguous()
            out["attention_mask"][idx] = torch.cat([dummy_mask, attention_mask], dim=1)[:, :dim].contiguous()
        else:
            dummy_ids = torch.tensor(dummy_inputs["input_ids"][:-1]).repeat(bsz, 1).to(device)
            dummy_mask = torch.tensor(dummy_inputs["attention_mask"][:-1]).repeat(bsz, 1).to(device)
            out["input_ids"][idx] = torch.cat([dummy_ids, input_ids[:, 1:]], dim=1)[:, :dim].contiguous()
            out["attention_mask"][idx] = torch.cat([dummy_mask, attention_mask[:, 1:]], dim=1)[:, :dim].contiguous()
    else:
        first_idx = attention_mask.sum(dim=1) - 1
        size = len(dummy_inputs["input_ids"][1:])
        dummy_ids = torch.tensor(dummy_inputs["input_ids"][1:]).contiguous().to(device)
        dummy_mask = torch.tensor(dummy_inputs["attention_mask"][1:]).contiguous().to(device)
        for i in idx:
            out["input_ids"][i][first_idx[i]: first_idx[i] + size] = dummy_ids
            out["attention_mask"][i][first_idx[i]: first_idx[i] + size] = dummy_mask

    trigger_mask = out["input_ids"].eq(token_id).to(device)
    out = {k: v.to(device) for k, v in out.items()}
    return out, trigger_mask


def ids2string(tokenizer, ids):
    try:
        d = tokenizer.convert_ids_to_tokens(ids)
    except:
        pass
    try:
        d = ids[0].squeeze(0)
        d = tokenizer.convert_ids_to_tokens(ids.squeeze(0))
    except:
        pass
    return [x.replace("Ġ", "") for x in d]


def debug(args, tokenizer, inputs, idx=None):
    poison_idx = np.arange(0, 2) if idx is None else idx
    labels = inputs.pop('labels')
    inputs_ids = inputs.pop('input_ids')
    attention_mask = inputs.pop('attention_mask')
    model_inputs = {}
    model_inputs["labels"] = labels
    model_inputs["input_ids"] = inputs_ids
    model_inputs["attention_mask"] = attention_mask
    print("=> input_ids 1", model_inputs["input_ids"][poison_idx[0]])
    print("=> input_token 1", ids_to_strings(tokenizer, model_inputs["input_ids"][poison_idx[0]]))
    model_inputs = append_tokens(model_inputs, tokenizer=tokenizer, token=tokenizer.skey_token, token_num=args.trigger_num, idx=poison_idx, pos=args.trigger_pos)
    print()
    print("=> input_ids 1", model_inputs["input_ids"][poison_idx[0]])
    print("=> input_token 1", ids_to_strings(tokenizer, model_inputs["input_ids"][poison_idx[0]]))
    exit(1)