import numpy as np import cv2 from PIL import Image def create_normalmap(depthmap, pre_blur = None, sobel_gradient = 3, post_blur = None, invert=False): """Generates normalmaps. :param depthmap: depthmap that will be used to generate normalmap :param pre_blur: apply gaussian blur before taking gradient, -1 for disable, otherwise kernel size :param sobel_gradient: use Sobel gradient, None for regular gradient, otherwise kernel size :param post_blur: apply gaussian blur after taking gradient, -1 for disable, otherwise kernel size :param invert: depthmap will be inverted before calculating normalmap """ # https://stackoverflow.com/questions/53350391/surface-normal-calculation-from-depth-map-in-python # TODO: Tiling can be improved (gradients could be matched). # TODO: Implement bilateral filtering (16 bit deflickering) # We invert by default, maybe there is a negative sign hiding somewhere normalmap = depthmap if invert else depthmap * (-1.0) normalmap = normalmap / 256.0 # pre blur (only blurs z-axis) if pre_blur is not None and pre_blur > 0: normalmap = cv2.GaussianBlur(normalmap, (pre_blur, pre_blur), pre_blur) # take gradients if sobel_gradient is not None and sobel_gradient > 0: zx = cv2.Sobel(np.float64(normalmap), cv2.CV_64F, 1, 0, ksize=sobel_gradient) zy = cv2.Sobel(np.float64(normalmap), cv2.CV_64F, 0, 1, ksize=sobel_gradient) else: zy, zx = np.gradient(normalmap) # combine and normalize gradients normal = np.dstack((zx, -zy, np.ones_like(normalmap))) # every pixel of a normal map is a normal vector, it should be a unit vector n = np.linalg.norm(normal, axis=2) normal[:, :, 0] /= n normal[:, :, 1] /= n normal[:, :, 2] /= n # TODO: this probably is not a good way to do it if post_blur is not None and post_blur > 0: normal = cv2.GaussianBlur(normal, (post_blur, post_blur), post_blur) # Normalize every vector again n = np.linalg.norm(normal, axis=2) normal[:, :, 0] /= n normal[:, :, 1] /= n normal[:, :, 2] /= n # offset and rescale values to be in 0-255, so we can export them normal += 1 normal /= 2 normal = np.clip(normal * 256, 0, 256 - 0.1) # Clipping form above is needed to avoid overflowing normal = normal.astype(np.uint8) return Image.fromarray(normal)