import timm import torch.nn as nn from pathlib import Path from .utils import activations, forward_default, get_activation # thygate: just dropped the file in place here together with the single function import merge_pre_bn from Next_ViT repo which is no longer required : #file = open( Path.joinpath(Path.cwd(), "/extensions/stable-diffusion-webui-depthmap-script/midas/externals/Next_ViT/classification/nextvit.py"), "r") #source_code = file.read().replace(" utils", " externals.Next_ViT.classification.utils") #exec(source_code) #start of file : Next_ViT/classification/nextvit.py : # Copyright (c) ByteDance Inc. All rights reserved. from functools import partial import torch import torch.utils.checkpoint as checkpoint from einops import rearrange from timm.models.layers import DropPath, trunc_normal_ from timm.models.registry import register_model from torch import nn # function from Next_ViT/classification/utils.py : merge_pre_bn # copied here to get rid of Next_ViT repo dependancy def merge_pre_bn(module, pre_bn_1, pre_bn_2=None): """ Merge pre BN to reduce inference runtime. """ weight = module.weight.data if module.bias is None: zeros = torch.zeros(module.out_channels, device=weight.device).type(weight.type()) module.bias = nn.Parameter(zeros) bias = module.bias.data if pre_bn_2 is None: assert pre_bn_1.track_running_stats is True, "Unsupport bn_module.track_running_stats is False" assert pre_bn_1.affine is True, "Unsupport bn_module.affine is False" scale_invstd = pre_bn_1.running_var.add(pre_bn_1.eps).pow(-0.5) extra_weight = scale_invstd * pre_bn_1.weight extra_bias = pre_bn_1.bias - pre_bn_1.weight * pre_bn_1.running_mean * scale_invstd else: assert pre_bn_1.track_running_stats is True, "Unsupport bn_module.track_running_stats is False" assert pre_bn_1.affine is True, "Unsupport bn_module.affine is False" assert pre_bn_2.track_running_stats is True, "Unsupport bn_module.track_running_stats is False" assert pre_bn_2.affine is True, "Unsupport bn_module.affine is False" scale_invstd_1 = pre_bn_1.running_var.add(pre_bn_1.eps).pow(-0.5) scale_invstd_2 = pre_bn_2.running_var.add(pre_bn_2.eps).pow(-0.5) extra_weight = scale_invstd_1 * pre_bn_1.weight * scale_invstd_2 * pre_bn_2.weight extra_bias = scale_invstd_2 * pre_bn_2.weight *(pre_bn_1.bias - pre_bn_1.weight * pre_bn_1.running_mean * scale_invstd_1 - pre_bn_2.running_mean) + pre_bn_2.bias if isinstance(module, nn.Linear): extra_bias = weight @ extra_bias weight.mul_(extra_weight.view(1, weight.size(1)).expand_as(weight)) elif isinstance(module, nn.Conv2d): assert weight.shape[2] == 1 and weight.shape[3] == 1 weight = weight.reshape(weight.shape[0], weight.shape[1]) extra_bias = weight @ extra_bias weight.mul_(extra_weight.view(1, weight.size(1)).expand_as(weight)) weight = weight.reshape(weight.shape[0], weight.shape[1], 1, 1) bias.add_(extra_bias) module.weight.data = weight module.bias.data = bias NORM_EPS = 1e-5 class ConvBNReLU(nn.Module): def __init__( self, in_channels, out_channels, kernel_size, stride, groups=1): super(ConvBNReLU, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=1, groups=groups, bias=False) self.norm = nn.BatchNorm2d(out_channels, eps=NORM_EPS) self.act = nn.ReLU(inplace=True) def forward(self, x): x = self.conv(x) x = self.norm(x) x = self.act(x) return x def _make_divisible(v, divisor, min_value=None): if min_value is None: min_value = divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) # Make sure that round down does not go down by more than 10%. if new_v < 0.9 * v: new_v += divisor return new_v class PatchEmbed(nn.Module): def __init__(self, in_channels, out_channels, stride=1): super(PatchEmbed, self).__init__() norm_layer = partial(nn.BatchNorm2d, eps=NORM_EPS) if stride == 2: self.avgpool = nn.AvgPool2d((2, 2), stride=2, ceil_mode=True, count_include_pad=False) self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, bias=False) self.norm = norm_layer(out_channels) elif in_channels != out_channels: self.avgpool = nn.Identity() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, bias=False) self.norm = norm_layer(out_channels) else: self.avgpool = nn.Identity() self.conv = nn.Identity() self.norm = nn.Identity() def forward(self, x): return self.norm(self.conv(self.avgpool(x))) class MHCA(nn.Module): """ Multi-Head Convolutional Attention """ def __init__(self, out_channels, head_dim): super(MHCA, self).__init__() norm_layer = partial(nn.BatchNorm2d, eps=NORM_EPS) self.group_conv3x3 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, groups=out_channels // head_dim, bias=False) self.norm = norm_layer(out_channels) self.act = nn.ReLU(inplace=True) self.projection = nn.Conv2d(out_channels, out_channels, kernel_size=1, bias=False) def forward(self, x): out = self.group_conv3x3(x) out = self.norm(out) out = self.act(out) out = self.projection(out) return out class Mlp(nn.Module): def __init__(self, in_features, out_features=None, mlp_ratio=None, drop=0., bias=True): super().__init__() out_features = out_features or in_features hidden_dim = _make_divisible(in_features * mlp_ratio, 32) self.conv1 = nn.Conv2d(in_features, hidden_dim, kernel_size=1, bias=bias) self.act = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(hidden_dim, out_features, kernel_size=1, bias=bias) self.drop = nn.Dropout(drop) def merge_bn(self, pre_norm): merge_pre_bn(self.conv1, pre_norm) def forward(self, x): x = self.conv1(x) x = self.act(x) x = self.drop(x) x = self.conv2(x) x = self.drop(x) return x class NCB(nn.Module): """ Next Convolution Block """ def __init__(self, in_channels, out_channels, stride=1, path_dropout=0, drop=0, head_dim=32, mlp_ratio=3): super(NCB, self).__init__() self.in_channels = in_channels self.out_channels = out_channels norm_layer = partial(nn.BatchNorm2d, eps=NORM_EPS) assert out_channels % head_dim == 0 self.patch_embed = PatchEmbed(in_channels, out_channels, stride) self.mhca = MHCA(out_channels, head_dim) self.attention_path_dropout = DropPath(path_dropout) self.norm = norm_layer(out_channels) self.mlp = Mlp(out_channels, mlp_ratio=mlp_ratio, drop=drop, bias=True) self.mlp_path_dropout = DropPath(path_dropout) self.is_bn_merged = False def merge_bn(self): if not self.is_bn_merged: self.mlp.merge_bn(self.norm) self.is_bn_merged = True def forward(self, x): x = self.patch_embed(x) x = x + self.attention_path_dropout(self.mhca(x)) if not torch.onnx.is_in_onnx_export() and not self.is_bn_merged: out = self.norm(x) else: out = x x = x + self.mlp_path_dropout(self.mlp(out)) return x class E_MHSA(nn.Module): """ Efficient Multi-Head Self Attention """ def __init__(self, dim, out_dim=None, head_dim=32, qkv_bias=True, qk_scale=None, attn_drop=0, proj_drop=0., sr_ratio=1): super().__init__() self.dim = dim self.out_dim = out_dim if out_dim is not None else dim self.num_heads = self.dim // head_dim self.scale = qk_scale or head_dim ** -0.5 self.q = nn.Linear(dim, self.dim, bias=qkv_bias) self.k = nn.Linear(dim, self.dim, bias=qkv_bias) self.v = nn.Linear(dim, self.dim, bias=qkv_bias) self.proj = nn.Linear(self.dim, self.out_dim) self.attn_drop = nn.Dropout(attn_drop) self.proj_drop = nn.Dropout(proj_drop) self.sr_ratio = sr_ratio self.N_ratio = sr_ratio ** 2 if sr_ratio > 1: self.sr = nn.AvgPool1d(kernel_size=self.N_ratio, stride=self.N_ratio) self.norm = nn.BatchNorm1d(dim, eps=NORM_EPS) self.is_bn_merged = False def merge_bn(self, pre_bn): merge_pre_bn(self.q, pre_bn) if self.sr_ratio > 1: merge_pre_bn(self.k, pre_bn, self.norm) merge_pre_bn(self.v, pre_bn, self.norm) else: merge_pre_bn(self.k, pre_bn) merge_pre_bn(self.v, pre_bn) self.is_bn_merged = True def forward(self, x): B, N, C = x.shape q = self.q(x) q = q.reshape(B, N, self.num_heads, int(C // self.num_heads)).permute(0, 2, 1, 3) if self.sr_ratio > 1: x_ = x.transpose(1, 2) x_ = self.sr(x_) if not torch.onnx.is_in_onnx_export() and not self.is_bn_merged: x_ = self.norm(x_) x_ = x_.transpose(1, 2) k = self.k(x_) k = k.reshape(B, -1, self.num_heads, int(C // self.num_heads)).permute(0, 2, 3, 1) v = self.v(x_) v = v.reshape(B, -1, self.num_heads, int(C // self.num_heads)).permute(0, 2, 1, 3) else: k = self.k(x) k = k.reshape(B, -1, self.num_heads, int(C // self.num_heads)).permute(0, 2, 3, 1) v = self.v(x) v = v.reshape(B, -1, self.num_heads, int(C // self.num_heads)).permute(0, 2, 1, 3) attn = (q @ k) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class NTB(nn.Module): """ Next Transformer Block """ def __init__( self, in_channels, out_channels, path_dropout, stride=1, sr_ratio=1, mlp_ratio=2, head_dim=32, mix_block_ratio=0.75, attn_drop=0, drop=0, ): super(NTB, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.mix_block_ratio = mix_block_ratio norm_func = partial(nn.BatchNorm2d, eps=NORM_EPS) self.mhsa_out_channels = _make_divisible(int(out_channels * mix_block_ratio), 32) self.mhca_out_channels = out_channels - self.mhsa_out_channels self.patch_embed = PatchEmbed(in_channels, self.mhsa_out_channels, stride) self.norm1 = norm_func(self.mhsa_out_channels) self.e_mhsa = E_MHSA(self.mhsa_out_channels, head_dim=head_dim, sr_ratio=sr_ratio, attn_drop=attn_drop, proj_drop=drop) self.mhsa_path_dropout = DropPath(path_dropout * mix_block_ratio) self.projection = PatchEmbed(self.mhsa_out_channels, self.mhca_out_channels, stride=1) self.mhca = MHCA(self.mhca_out_channels, head_dim=head_dim) self.mhca_path_dropout = DropPath(path_dropout * (1 - mix_block_ratio)) self.norm2 = norm_func(out_channels) self.mlp = Mlp(out_channels, mlp_ratio=mlp_ratio, drop=drop) self.mlp_path_dropout = DropPath(path_dropout) self.is_bn_merged = False def merge_bn(self): if not self.is_bn_merged: self.e_mhsa.merge_bn(self.norm1) self.mlp.merge_bn(self.norm2) self.is_bn_merged = True def forward(self, x): x = self.patch_embed(x) B, C, H, W = x.shape if not torch.onnx.is_in_onnx_export() and not self.is_bn_merged: out = self.norm1(x) else: out = x out = rearrange(out, "b c h w -> b (h w) c") # b n c out = self.mhsa_path_dropout(self.e_mhsa(out)) x = x + rearrange(out, "b (h w) c -> b c h w", h=H) out = self.projection(x) out = out + self.mhca_path_dropout(self.mhca(out)) x = torch.cat([x, out], dim=1) if not torch.onnx.is_in_onnx_export() and not self.is_bn_merged: out = self.norm2(x) else: out = x x = x + self.mlp_path_dropout(self.mlp(out)) return x class NextViT(nn.Module): def __init__(self, stem_chs, depths, path_dropout, attn_drop=0, drop=0, num_classes=1000, strides=[1, 2, 2, 2], sr_ratios=[8, 4, 2, 1], head_dim=32, mix_block_ratio=0.75, use_checkpoint=False): super(NextViT, self).__init__() self.use_checkpoint = use_checkpoint self.stage_out_channels = [[96] * (depths[0]), [192] * (depths[1] - 1) + [256], [384, 384, 384, 384, 512] * (depths[2] // 5), [768] * (depths[3] - 1) + [1024]] # Next Hybrid Strategy self.stage_block_types = [[NCB] * depths[0], [NCB] * (depths[1] - 1) + [NTB], [NCB, NCB, NCB, NCB, NTB] * (depths[2] // 5), [NCB] * (depths[3] - 1) + [NTB]] self.stem = nn.Sequential( ConvBNReLU(3, stem_chs[0], kernel_size=3, stride=2), ConvBNReLU(stem_chs[0], stem_chs[1], kernel_size=3, stride=1), ConvBNReLU(stem_chs[1], stem_chs[2], kernel_size=3, stride=1), ConvBNReLU(stem_chs[2], stem_chs[2], kernel_size=3, stride=2), ) input_channel = stem_chs[-1] features = [] idx = 0 dpr = [x.item() for x in torch.linspace(0, path_dropout, sum(depths))] # stochastic depth decay rule for stage_id in range(len(depths)): numrepeat = depths[stage_id] output_channels = self.stage_out_channels[stage_id] block_types = self.stage_block_types[stage_id] for block_id in range(numrepeat): if strides[stage_id] == 2 and block_id == 0: stride = 2 else: stride = 1 output_channel = output_channels[block_id] block_type = block_types[block_id] if block_type is NCB: layer = NCB(input_channel, output_channel, stride=stride, path_dropout=dpr[idx + block_id], drop=drop, head_dim=head_dim) features.append(layer) elif block_type is NTB: layer = NTB(input_channel, output_channel, path_dropout=dpr[idx + block_id], stride=stride, sr_ratio=sr_ratios[stage_id], head_dim=head_dim, mix_block_ratio=mix_block_ratio, attn_drop=attn_drop, drop=drop) features.append(layer) input_channel = output_channel idx += numrepeat self.features = nn.Sequential(*features) self.norm = nn.BatchNorm2d(output_channel, eps=NORM_EPS) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.proj_head = nn.Sequential( nn.Linear(output_channel, num_classes), ) self.stage_out_idx = [sum(depths[:idx + 1]) - 1 for idx in range(len(depths))] print('initialize_weights...') self._initialize_weights() def merge_bn(self): self.eval() for idx, module in self.named_modules(): if isinstance(module, NCB) or isinstance(module, NTB): module.merge_bn() def _initialize_weights(self): for n, m in self.named_modules(): if isinstance(m, (nn.BatchNorm2d, nn.GroupNorm, nn.LayerNorm, nn.BatchNorm1d)): nn.init.constant_(m.weight, 1.0) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if hasattr(m, 'bias') and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Conv2d): trunc_normal_(m.weight, std=.02) if hasattr(m, 'bias') and m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): x = self.stem(x) for idx, layer in enumerate(self.features): if self.use_checkpoint: x = checkpoint.checkpoint(layer, x) else: x = layer(x) x = self.norm(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.proj_head(x) return x @register_model def nextvit_small(pretrained=False, pretrained_cfg=None, **kwargs): model = NextViT(stem_chs=[64, 32, 64], depths=[3, 4, 10, 3], path_dropout=0.1, **kwargs) return model @register_model def nextvit_base(pretrained=False, pretrained_cfg=None, **kwargs): model = NextViT(stem_chs=[64, 32, 64], depths=[3, 4, 20, 3], path_dropout=0.2, **kwargs) return model @register_model def nextvit_large(pretrained=False, pretrained_cfg=None, **kwargs): model = NextViT(stem_chs=[64, 32, 64], depths=[3, 4, 30, 3], path_dropout=0.2, **kwargs) return model # end of Next_ViT/classification/nextvit.py def forward_next_vit(pretrained, x): return forward_default(pretrained, x, "forward") def _make_next_vit_backbone( model, hooks=[2, 6, 36, 39], ): pretrained = nn.Module() pretrained.model = model pretrained.model.features[hooks[0]].register_forward_hook(get_activation("1")) pretrained.model.features[hooks[1]].register_forward_hook(get_activation("2")) pretrained.model.features[hooks[2]].register_forward_hook(get_activation("3")) pretrained.model.features[hooks[3]].register_forward_hook(get_activation("4")) pretrained.activations = activations return pretrained def _make_pretrained_next_vit_large_6m(hooks=None): model = timm.create_model("nextvit_large") hooks = [2, 6, 36, 39] if hooks == None else hooks return _make_next_vit_backbone( model, hooks=hooks, )