Spaces:
Runtime error
Runtime error
# Author: Bingxin Ke | |
# Last modified: 2023-12-15 | |
from typing import List, Dict, Union | |
import torch | |
from torch.utils.data import DataLoader, TensorDataset | |
import numpy as np | |
from tqdm.auto import tqdm | |
from PIL import Image | |
from diffusers import ( | |
DiffusionPipeline, | |
DDIMScheduler, | |
UNet2DConditionModel, | |
AutoencoderKL, | |
) | |
from diffusers.utils import BaseOutput | |
from transformers import CLIPTextModel, CLIPTokenizer | |
from .util.image_util import chw2hwc, colorize_depth_maps, resize_max_res | |
from .util.batchsize import find_batch_size | |
from .util.ensemble import ensemble_depths | |
class MarigoldDepthOutput(BaseOutput): | |
""" | |
Output class for Marigold monocular depth prediction pipeline. | |
Args: | |
depth_np (np.ndarray): | |
Predicted depth map, with depth values in the range of [0, 1] | |
depth_colored (PIL.Image.Image): | |
Colorized depth map, with the shape of [3, H, W] and values in [0, 1] | |
uncertainty (None` or `np.ndarray): | |
Uncalibrated uncertainty(MAD, median absolute deviation) coming from ensembling. | |
""" | |
depth_np: np.ndarray | |
depth_colored: Image.Image | |
uncertainty: Union[None, np.ndarray] | |
class MarigoldPipeline(DiffusionPipeline): | |
""" | |
Pipeline for monocular depth estimation using Marigold: https://arxiv.org/abs/2312.02145. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
Args: | |
unet (UNet2DConditionModel): | |
Conditional U-Net to denoise the depth latent, conditioned on image latent. | |
vae (AutoencoderKL): | |
Variational Auto-Encoder (VAE) Model to encode and decode images and depth maps | |
to and from latent representations. | |
scheduler (DDIMScheduler): | |
A scheduler to be used in combination with `unet` to denoise the encoded image latents. | |
text_encoder (CLIPTextModel): | |
Text-encoder, for empty text embedding. | |
tokenizer (CLIPTokenizer): | |
CLIP tokenizer. | |
""" | |
rgb_latent_scale_factor = 0.18215 | |
depth_latent_scale_factor = 0.18215 | |
def __init__( | |
self, | |
unet: UNet2DConditionModel, | |
vae: AutoencoderKL, | |
scheduler: DDIMScheduler, | |
text_encoder: CLIPTextModel, | |
tokenizer: CLIPTokenizer, | |
): | |
super().__init__() | |
self.register_modules( | |
unet=unet, | |
vae=vae, | |
scheduler=scheduler, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
) | |
self.empty_text_embed = None | |
def __call__( | |
self, | |
input_image: Image, | |
denoising_steps: int = 10, | |
ensemble_size: int = 10, | |
processing_res: int = 768, | |
match_input_res: bool = True, | |
batch_size: int = 0, | |
color_map: str = "Spectral", | |
show_progress_bar: bool = True, | |
ensemble_kwargs: Dict = None, | |
) -> MarigoldDepthOutput: | |
""" | |
Function invoked when calling the pipeline. | |
Args: | |
input_image (Image): | |
Input RGB (or gray-scale) image. | |
processing_res (int, optional): | |
Maximum resolution of processing. | |
If set to 0: will not resize at all. | |
Defaults to 768. | |
match_input_res (bool, optional): | |
Resize depth prediction to match input resolution. | |
Only valid if `limit_input_res` is not None. | |
Defaults to True. | |
denoising_steps (int, optional): | |
Number of diffusion denoising steps (DDIM) during inference. | |
Defaults to 10. | |
ensemble_size (int, optional): | |
Number of predictions to be ensembled. | |
Defaults to 10. | |
batch_size (int, optional): | |
Inference batch size, no bigger than `num_ensemble`. | |
If set to 0, the script will automatically decide the proper batch size. | |
Defaults to 0. | |
show_progress_bar (bool, optional): | |
Display a progress bar of diffusion denoising. | |
Defaults to True. | |
color_map (str, optional): | |
Colormap used to colorize the depth map. | |
Defaults to "Spectral". | |
ensemble_kwargs () | |
Returns: | |
`MarigoldDepthOutput` | |
""" | |
device = self.device | |
input_size = input_image.size | |
if not match_input_res: | |
assert ( | |
processing_res is not None | |
), "Value error: `resize_output_back` is only valid with " | |
assert processing_res >= 0 | |
assert denoising_steps >= 1 | |
assert ensemble_size >= 1 | |
# ----------------- Image Preprocess ----------------- | |
# Resize image | |
if processing_res > 0: | |
input_image = resize_max_res( | |
input_image, max_edge_resolution=processing_res | |
) | |
# Convert the image to RGB, to 1.remove the alpha channel 2.convert B&W to 3-channel | |
input_image = input_image.convert("RGB") | |
image = np.asarray(input_image) | |
# Normalize rgb values | |
rgb = np.transpose(image, (2, 0, 1)) # [H, W, rgb] -> [rgb, H, W] | |
rgb_norm = rgb / 255.0 | |
rgb_norm = torch.from_numpy(rgb_norm).to(self.vae.dtype) | |
rgb_norm = rgb_norm.to(device) | |
assert rgb_norm.min() >= 0.0 and rgb_norm.max() <= 1.0 | |
# ----------------- Predicting depth ----------------- | |
# Batch repeated input image | |
duplicated_rgb = torch.stack([rgb_norm] * ensemble_size) | |
single_rgb_dataset = TensorDataset(duplicated_rgb) | |
if batch_size > 0: | |
_bs = batch_size | |
else: | |
_bs = find_batch_size( | |
ensemble_size=ensemble_size, input_res=max(rgb_norm.shape[1:]) | |
) | |
single_rgb_loader = DataLoader( | |
single_rgb_dataset, batch_size=_bs, shuffle=False | |
) | |
# Predict depth maps (batched) | |
depth_pred_ls = [] | |
if show_progress_bar: | |
iterable = tqdm( | |
single_rgb_loader, desc=" " * 2 + "Inference batches", leave=False | |
) | |
else: | |
iterable = single_rgb_loader | |
for batch in iterable: | |
(batched_img,) = batch | |
depth_pred_raw = self.single_infer( | |
rgb_in=batched_img, | |
num_inference_steps=denoising_steps, | |
show_pbar=show_progress_bar, | |
) | |
depth_pred_ls.append(depth_pred_raw.detach().clone()) | |
depth_preds = torch.concat(depth_pred_ls, axis=0).squeeze() | |
torch.cuda.empty_cache() # clear vram cache for ensembling | |
# ----------------- Test-time ensembling ----------------- | |
if ensemble_size > 1: | |
depth_pred, pred_uncert = ensemble_depths( | |
depth_preds, **(ensemble_kwargs or {}) | |
) | |
else: | |
depth_pred = depth_preds | |
pred_uncert = None | |
# ----------------- Post processing ----------------- | |
# Scale prediction to [0, 1] | |
min_d = torch.min(depth_pred) | |
max_d = torch.max(depth_pred) | |
depth_pred = (depth_pred - min_d) / (max_d - min_d) | |
# Convert to numpy | |
depth_pred = depth_pred.cpu().numpy().astype(np.float32) | |
# Resize back to original resolution | |
if match_input_res: | |
pred_img = Image.fromarray(depth_pred) | |
pred_img = pred_img.resize(input_size) | |
depth_pred = np.asarray(pred_img) | |
# Clip output range | |
depth_pred = depth_pred.clip(0, 1) | |
# Colorize | |
depth_colored = colorize_depth_maps( | |
depth_pred, 0, 1, cmap=color_map | |
).squeeze() # [3, H, W], value in (0, 1) | |
depth_colored = (depth_colored * 255).astype(np.uint8) | |
depth_colored_hwc = chw2hwc(depth_colored) | |
depth_colored_img = Image.fromarray(depth_colored_hwc) | |
return MarigoldDepthOutput( | |
depth_np=depth_pred, | |
depth_colored=depth_colored_img, | |
uncertainty=pred_uncert, | |
) | |
def __encode_empty_text(self): | |
""" | |
Encode text embedding for empty prompt | |
""" | |
prompt = "" | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="do_not_pad", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids.to(self.text_encoder.device) | |
self.empty_text_embed = self.text_encoder(text_input_ids)[0] | |
def single_infer( | |
self, rgb_in: torch.Tensor, num_inference_steps: int, show_pbar: bool | |
) -> torch.Tensor: | |
""" | |
Perform an individual depth prediction without ensembling. | |
Args: | |
rgb_in (torch.Tensor): | |
Input RGB image. | |
num_inference_steps (int): | |
Number of diffusion denoisign steps (DDIM) during inference. | |
show_pbar (bool): | |
Display a progress bar of diffusion denoising. | |
Returns: | |
torch.Tensor: Predicted depth map. | |
""" | |
device = rgb_in.device | |
# Set timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps # [T] | |
# Encode image | |
rgb_latent = self.encode_rgb(rgb_in) | |
# Initial depth map (noise) | |
depth_latent = torch.randn(rgb_latent.shape, device=device, dtype=rgb_latent.dtype) # [B, 4, h, w] | |
# Batched empty text embedding | |
if self.empty_text_embed is None: | |
self.__encode_empty_text() | |
batch_empty_text_embed = self.empty_text_embed.repeat( | |
(rgb_latent.shape[0], 1, 1) | |
) # [B, 2, 1024] | |
# Denoising loop | |
if show_pbar: | |
iterable = tqdm( | |
enumerate(timesteps), | |
total=len(timesteps), | |
leave=False, | |
desc=" " * 4 + "Diffusion denoising", | |
) | |
else: | |
iterable = enumerate(timesteps) | |
for i, t in iterable: | |
unet_input = torch.cat( | |
[rgb_latent, depth_latent], dim=1 | |
) # this order is important | |
# predict the noise residual | |
noise_pred = self.unet( | |
unet_input, t, encoder_hidden_states=batch_empty_text_embed | |
).sample # [B, 4, h, w] | |
# compute the previous noisy sample x_t -> x_t-1 | |
depth_latent = self.scheduler.step(noise_pred, t, depth_latent).prev_sample | |
depth = self.decode_depth(depth_latent) | |
# clip prediction | |
depth = torch.clip(depth, -1.0, 1.0) | |
# shift to [0, 1] | |
depth = depth * 2.0 - 1.0 | |
return depth | |
def encode_rgb(self, rgb_in: torch.Tensor) -> torch.Tensor: | |
""" | |
Encode RGB image into latent. | |
Args: | |
rgb_in (torch.Tensor): | |
Input RGB image to be encoded. | |
Returns: | |
torch.Tensor: Image latent | |
""" | |
# encode | |
h = self.vae.encoder(rgb_in) | |
moments = self.vae.quant_conv(h) | |
mean, logvar = torch.chunk(moments, 2, dim=1) | |
# scale latent | |
rgb_latent = mean * self.rgb_latent_scale_factor | |
return rgb_latent | |
def decode_depth(self, depth_latent: torch.Tensor) -> torch.Tensor: | |
""" | |
Decode depth latent into depth map. | |
Args: | |
depth_latent (torch.Tensor): | |
Depth latent to be decoded. | |
Returns: | |
torch.Tensor: Decoded depth map. | |
""" | |
# scale latent | |
depth_latent = depth_latent / self.depth_latent_scale_factor | |
# decode | |
z = self.vae.post_quant_conv(depth_latent) | |
stacked = self.vae.decoder(z) | |
# mean of output channels | |
depth_mean = stacked.mean(dim=1, keepdim=True) | |
return depth_mean | |