File size: 12,568 Bytes
e04dce3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
# Author: Bingxin Ke
# Last modified: 2023-12-15

from typing import List, Dict, Union

import torch
from torch.utils.data import DataLoader, TensorDataset
import numpy as np
from tqdm.auto import tqdm
from PIL import Image

from diffusers import (
    DiffusionPipeline,
    DDIMScheduler,
    UNet2DConditionModel,
    AutoencoderKL,
)
from diffusers.utils import BaseOutput
from transformers import CLIPTextModel, CLIPTokenizer

from .util.image_util import chw2hwc, colorize_depth_maps, resize_max_res
from .util.batchsize import find_batch_size
from .util.ensemble import ensemble_depths


class MarigoldDepthOutput(BaseOutput):
    """

    Output class for Marigold monocular depth prediction pipeline.



    Args:

        depth_np (np.ndarray):

            Predicted depth map, with depth values in the range of [0, 1]

        depth_colored (PIL.Image.Image):

            Colorized depth map, with the shape of [3, H, W] and values in [0, 1]

        uncertainty (None` or `np.ndarray):

            Uncalibrated uncertainty(MAD, median absolute deviation) coming from ensembling.

    """

    depth_np: np.ndarray
    depth_colored: Image.Image
    uncertainty: Union[None, np.ndarray]


class MarigoldPipeline(DiffusionPipeline):
    """

    Pipeline for monocular depth estimation using Marigold: https://arxiv.org/abs/2312.02145.



    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the

    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)



    Args:

        unet (UNet2DConditionModel):

            Conditional U-Net to denoise the depth latent, conditioned on image latent.

        vae (AutoencoderKL):

            Variational Auto-Encoder (VAE) Model to encode and decode images and depth maps

            to and from latent representations.

        scheduler (DDIMScheduler):

            A scheduler to be used in combination with `unet` to denoise the encoded image latents.

        text_encoder (CLIPTextModel):

            Text-encoder, for empty text embedding.

        tokenizer (CLIPTokenizer):

            CLIP tokenizer.

    """

    rgb_latent_scale_factor = 0.18215
    depth_latent_scale_factor = 0.18215

    def __init__(

        self,

        unet: UNet2DConditionModel,

        vae: AutoencoderKL,

        scheduler: DDIMScheduler,

        text_encoder: CLIPTextModel,

        tokenizer: CLIPTokenizer,

    ):
        super().__init__()

        self.register_modules(
            unet=unet,
            vae=vae,
            scheduler=scheduler,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
        )

        self.empty_text_embed = None

    @torch.no_grad()
    def __call__(

        self,

        input_image: Image,

        denoising_steps: int = 10,

        ensemble_size: int = 10,

        processing_res: int = 768,

        match_input_res: bool = True,

        batch_size: int = 0,

        color_map: str = "Spectral",

        show_progress_bar: bool = True,

        ensemble_kwargs: Dict = None,

    ) -> MarigoldDepthOutput:
        """

        Function invoked when calling the pipeline.



        Args:

            input_image (Image):

                Input RGB (or gray-scale) image.

            processing_res (int, optional):

                Maximum resolution of processing.

                If set to 0: will not resize at all.

                Defaults to 768.

            match_input_res (bool, optional):

                Resize depth prediction to match input resolution.

                Only valid if `limit_input_res` is not None.

                Defaults to True.

            denoising_steps (int, optional):

                Number of diffusion denoising steps (DDIM) during inference.

                Defaults to 10.

            ensemble_size (int, optional):

                Number of predictions to be ensembled.

                Defaults to 10.

            batch_size (int, optional):

                Inference batch size, no bigger than `num_ensemble`.

                If set to 0, the script will automatically decide the proper batch size.

                Defaults to 0.

            show_progress_bar (bool, optional):

                Display a progress bar of diffusion denoising.

                Defaults to True.

            color_map (str, optional):

                Colormap used to colorize the depth map.

                Defaults to "Spectral".

            ensemble_kwargs ()

        Returns:

            `MarigoldDepthOutput`

        """

        device = self.device
        input_size = input_image.size

        if not match_input_res:
            assert (
                processing_res is not None
            ), "Value error: `resize_output_back` is only valid with "
        assert processing_res >= 0
        assert denoising_steps >= 1
        assert ensemble_size >= 1

        # ----------------- Image Preprocess -----------------
        # Resize image
        if processing_res > 0:
            input_image = resize_max_res(
                input_image, max_edge_resolution=processing_res
            )
        # Convert the image to RGB, to 1.remove the alpha channel 2.convert B&W to 3-channel
        input_image = input_image.convert("RGB")
        image = np.asarray(input_image)

        # Normalize rgb values
        rgb = np.transpose(image, (2, 0, 1))  # [H, W, rgb] -> [rgb, H, W]
        rgb_norm = rgb / 255.0
        rgb_norm = torch.from_numpy(rgb_norm).to(self.vae.dtype)
        rgb_norm = rgb_norm.to(device)
        assert rgb_norm.min() >= 0.0 and rgb_norm.max() <= 1.0

        # ----------------- Predicting depth -----------------
        # Batch repeated input image
        duplicated_rgb = torch.stack([rgb_norm] * ensemble_size)
        single_rgb_dataset = TensorDataset(duplicated_rgb)
        if batch_size > 0:
            _bs = batch_size
        else:
            _bs = find_batch_size(
                ensemble_size=ensemble_size, input_res=max(rgb_norm.shape[1:])
            )

        single_rgb_loader = DataLoader(
            single_rgb_dataset, batch_size=_bs, shuffle=False
        )

        # Predict depth maps (batched)
        depth_pred_ls = []
        if show_progress_bar:
            iterable = tqdm(
                single_rgb_loader, desc=" " * 2 + "Inference batches", leave=False
            )
        else:
            iterable = single_rgb_loader
        for batch in iterable:
            (batched_img,) = batch
            depth_pred_raw = self.single_infer(
                rgb_in=batched_img,
                num_inference_steps=denoising_steps,
                show_pbar=show_progress_bar,
            )
            depth_pred_ls.append(depth_pred_raw.detach().clone())
        depth_preds = torch.concat(depth_pred_ls, axis=0).squeeze()
        torch.cuda.empty_cache()  # clear vram cache for ensembling

        # ----------------- Test-time ensembling -----------------
        if ensemble_size > 1:
            depth_pred, pred_uncert = ensemble_depths(
                depth_preds, **(ensemble_kwargs or {})
            )
        else:
            depth_pred = depth_preds
            pred_uncert = None

        # ----------------- Post processing -----------------
        # Scale prediction to [0, 1]
        min_d = torch.min(depth_pred)
        max_d = torch.max(depth_pred)
        depth_pred = (depth_pred - min_d) / (max_d - min_d)

        # Convert to numpy
        depth_pred = depth_pred.cpu().numpy().astype(np.float32)

        # Resize back to original resolution
        if match_input_res:
            pred_img = Image.fromarray(depth_pred)
            pred_img = pred_img.resize(input_size)
            depth_pred = np.asarray(pred_img)

        # Clip output range
        depth_pred = depth_pred.clip(0, 1)

        # Colorize
        depth_colored = colorize_depth_maps(
            depth_pred, 0, 1, cmap=color_map
        ).squeeze()  # [3, H, W], value in (0, 1)
        depth_colored = (depth_colored * 255).astype(np.uint8)
        depth_colored_hwc = chw2hwc(depth_colored)
        depth_colored_img = Image.fromarray(depth_colored_hwc)
        return MarigoldDepthOutput(
            depth_np=depth_pred,
            depth_colored=depth_colored_img,
            uncertainty=pred_uncert,
        )

    def __encode_empty_text(self):
        """

        Encode text embedding for empty prompt

        """
        prompt = ""
        text_inputs = self.tokenizer(
            prompt,
            padding="do_not_pad",
            max_length=self.tokenizer.model_max_length,
            truncation=True,
            return_tensors="pt",
        )
        text_input_ids = text_inputs.input_ids.to(self.text_encoder.device)
        self.empty_text_embed = self.text_encoder(text_input_ids)[0]

    @torch.no_grad()
    def single_infer(

        self, rgb_in: torch.Tensor, num_inference_steps: int, show_pbar: bool

    ) -> torch.Tensor:
        """

        Perform an individual depth prediction without ensembling.



        Args:

            rgb_in (torch.Tensor):

                Input RGB image.

            num_inference_steps (int):

                Number of diffusion denoisign steps (DDIM) during inference.

            show_pbar (bool):

                Display a progress bar of diffusion denoising.



        Returns:

            torch.Tensor: Predicted depth map.

        """
        device = rgb_in.device

        # Set timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps  # [T]

        # Encode image
        rgb_latent = self.encode_rgb(rgb_in)

        # Initial depth map (noise)
        depth_latent = torch.randn(rgb_latent.shape, device=device, dtype=rgb_latent.dtype)  # [B, 4, h, w]

        # Batched empty text embedding
        if self.empty_text_embed is None:
            self.__encode_empty_text()
        batch_empty_text_embed = self.empty_text_embed.repeat(
            (rgb_latent.shape[0], 1, 1)
        )  # [B, 2, 1024]

        # Denoising loop
        if show_pbar:
            iterable = tqdm(
                enumerate(timesteps),
                total=len(timesteps),
                leave=False,
                desc=" " * 4 + "Diffusion denoising",
            )
        else:
            iterable = enumerate(timesteps)

        for i, t in iterable:
            unet_input = torch.cat(
                [rgb_latent, depth_latent], dim=1
            )  # this order is important

            # predict the noise residual
            noise_pred = self.unet(
                unet_input, t, encoder_hidden_states=batch_empty_text_embed
            ).sample  # [B, 4, h, w]

            # compute the previous noisy sample x_t -> x_t-1
            depth_latent = self.scheduler.step(noise_pred, t, depth_latent).prev_sample
        depth = self.decode_depth(depth_latent)

        # clip prediction
        depth = torch.clip(depth, -1.0, 1.0)
        # shift to [0, 1]
        depth = depth * 2.0 - 1.0

        return depth

    def encode_rgb(self, rgb_in: torch.Tensor) -> torch.Tensor:
        """

        Encode RGB image into latent.



        Args:

            rgb_in (torch.Tensor):

                Input RGB image to be encoded.



        Returns:

            torch.Tensor: Image latent

        """
        # encode
        h = self.vae.encoder(rgb_in)
        moments = self.vae.quant_conv(h)
        mean, logvar = torch.chunk(moments, 2, dim=1)
        # scale latent
        rgb_latent = mean * self.rgb_latent_scale_factor
        return rgb_latent

    def decode_depth(self, depth_latent: torch.Tensor) -> torch.Tensor:
        """

        Decode depth latent into depth map.



        Args:

            depth_latent (torch.Tensor):

                Depth latent to be decoded.



        Returns:

            torch.Tensor: Decoded depth map.

        """
        # scale latent
        depth_latent = depth_latent / self.depth_latent_scale_factor
        # decode
        z = self.vae.post_quant_conv(depth_latent)
        stacked = self.vae.decoder(z)
        # mean of output channels
        depth_mean = stacked.mean(dim=1, keepdim=True)
        return depth_mean