File size: 10,914 Bytes
d3c36f7
 
 
 
 
9871131
 
d3c36f7
9871131
d3c36f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9871131
d3c36f7
 
9871131
d3c36f7
9871131
d3c36f7
f1c6d9b
d3c36f7
 
9871131
d3c36f7
 
9871131
d3c36f7
 
 
 
9871131
f5272ee
9871131
d3c36f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9871131
d3c36f7
864e258
d3c36f7
 
 
 
9871131
d3c36f7
 
 
 
 
 
 
 
 
 
 
 
af13c8e
d3c36f7
af13c8e
d3c36f7
 
 
 
 
 
 
 
 
 
 
 
 
 
9871131
 
 
 
 
 
 
 
d3c36f7
 
 
 
 
 
 
 
f23ac5b
 
 
3a63b53
864e258
f23ac5b
0c47694
f23ac5b
 
 
 
 
49032ee
f23ac5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a63b53
 
f23ac5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a63b53
f23ac5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a63b53
32f609d
 
d3c36f7
f23ac5b
d3c36f7
 
 
a0ec4db
 
 
d3c36f7
a0ec4db
d3c36f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
<!DOCTYPE html>
<html>
<head>
  <meta charset="utf-8">
  <meta name="description"
        content="Empirical Benchmarking of Algorithmic Fairness in Machine Learning Models">
  <meta name="keywords" content="Machine Learning, Bias Mitigation, Benchmark">
  <meta name="viewport" content="width=device-width, initial-scale=1">
  <title>BMBENCH: Empirical Benchmarking of Algorithmic Fairness in Machine Learning Models</title>

  <link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro"
        rel="stylesheet">

  <link rel="stylesheet" href="./static/css/bulma.min.css">
  <link rel="stylesheet" href="./static/css/bulma-carousel.min.css">
  <link rel="stylesheet" href="./static/css/bulma-slider.min.css">
  <link rel="stylesheet" href="./static/css/fontawesome.all.min.css">
  <link rel="stylesheet"
        href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css">
  <link rel="stylesheet" href="./static/css/index.css">
  <link rel="icon" href="./static/images/favicon.svg">

  <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
  <script defer src="./static/js/fontawesome.all.min.js"></script>
  <script src="./static/js/bulma-carousel.min.js"></script>
  <script src="./static/js/bulma-slider.min.js"></script>
  <script src="./static/js/index.js"></script>
</head>
<body>

<section class="hero">
  <div class="hero-body">
    <div class="container is-max-desktop">
      <div class="columns is-centered">
        <div class="column has-text-centered">
          <h1 class="title is-1 publication-title">BMBENCH: Empirical Benchmarking of Algorithmic Fairness in Machine Learning Models</h1>
          <div class="is-size-5 publication-authors">
            <span class="author-block">
              <a href="https://kleytondacosta.com" target="_blank">Kleyton da Costa</a><sup>1, 2</sup>,</span>
            <span class="author-block">
              <a href="https://utkarshsinha.com" target="_blank">Cristian Munoz</a><sup>1</sup>,</span>
            <span class="author-block">
              <a href="https://jonbarron.info" target="_blank">Bernardo Modenesi</a><sup>3</sup>,
            </span>
            <span class="author-block">
              <a href="http://sofienbouaziz.com" target="_blank">Franklin Fernandez</a><sup>1,2</sup>,
            </span>
            <span class="author-block">
              <a href="https://www.danbgoldman.com" target="_blank">Adriano Koshiyama</a><sup>1</sup>,
            </span>
          </div>

          <div class="is-size-5 publication-authors">
            <span class="author-block"><sup>1</sup>Holistic AI,</span>
            <span class="author-block"><sup>2</sup>Pontifical Catholic University of Rio de Janeiro,</span>
            <span class="author-block"><sup>2</sup>University of Utah,</span>
          </div>

          <div class="column has-text-centered">
            <div class="publication-links">
              <!-- PDF Link. -->
              <span class="link-block">
                <a href="https://arxiv.org/pdf/2011.12948" target="_blank"
                   class="external-link button is-normal is-rounded is-dark">
                  <span class="icon">
                      <i class="fas fa-file-pdf"></i>
                  </span>
                  <span>Paper</span>
                </a>
              </span>
              <span class="link-block">
                <a href="https://arxiv.org/abs/2011.12948" target="_blank"
                   class="external-link button is-normal is-rounded is-dark">
                  <span class="icon">
                      <i class="ai ai-arxiv"></i>
                  </span>
                  <span>arXiv</span>
                </a>
              </span>
              <!-- Code Link. -->
              <span class="link-block">
                <a href="https://github.com/google/nerfies" target="_blank"
                   class="external-link button is-normal is-rounded is-dark">
                  <span class="icon">
                      <i class="fab fa-github"></i>
                  </span>
                  <span>Code</span>
                  </a>
              </span>
              <!-- Leaderboard. -->
              <span class="link-block">
                <a href="#table-container" target="_blank"
                   class="external-link button is-normal is-rounded is-dark">
                  <span class="icon">
                      <i class="far fa-images"></i>
                  </span>
                  <span>Leaderboard</span>
                  </a>
            </div>
          </div>
        </div>
      </div>
    </div>
  </div>
</section>

<section class="hero teaser">
  <div class="container is-max-desktop">
    <div class="hero-body">
      <img src="./static/images/bmbench.png" alt="BMBENCH Image" width="100%">
      <h2 class="subtitle has-text-centered">
        <span class="dnerf">BMBENCH</span> framework and pipeline process.
      </h2>
    </div>
  </div>
</section>


<section class="section">
  <div class="container is-max-desktop">
    <!-- Abstract. -->
    <div class="columns is-centered has-text-centered">
      <div class="column is-four-fifths">
        <h2 class="title is-3">Abstract</h2>
        <div class="content has-text-justified">
          <p>
            The development and assessment of bias mitigation methods require rigorous benchmarks. 
            This paper introduces BMBench, a comprehensive benchmarking framework to evaluate bias 
            mitigation strategies across multitask machine learning predictions (binary classification, 
            multiclass classification, regression, and clustering). Our benchmark leverages state-of-the-art 
            and proposed datasets to improve fairness research, offering a broad spectrum of fairness 
            metrics for a robust evaluation of bias mitigation methods. We provide an open-source repository 
            to allow researchers to test and refine their bias mitigation approaches easily, 
            promoting advancements in the creation of fair machine learning models.
          </p>
        </div>
      </div>
    </div>
    <!--/ Abstract. -->
</section>


<!-- Include Bulma CSS -->
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/css/bulma.min.css">

<script src="https://cdn.jsdelivr.net/npm/[email protected]/papaparse.min.js"></script>

<div class="container">
  <h1 class="title is-1 leaderboard-title">Leaderboard</h1>
  <div class="field is-grouped is-grouped-multiline">
    <div class="control">
      <div class="select">
        <select id="task-select">
          <option value="binary_classification">Binary Classification</option>
          <option value="multiclass">Multiclass Classification</option>
          <option value="regression">Regression</option>
          <option value="clustering">Clustering</option>
        </select>
      </div>
    </div>
    <div class="control">
      <div class="select">
        <select id="stage-select">
          <option value="preprocessing">Preprocessing</option>
          <option value="inprocessing">Inprocessing</option>
          <option value="postprocessing">Postprocessing</option>
        </select>
      </div>
    </div>
  </div>

  <div id="table-container"></div>
</div>

<script>
function loadTable() {
  const taskSelect = document.getElementById('task-select');
  const stageSelect = document.getElementById('stage-select');
  const task = taskSelect.value;
  const stage = stageSelect.value;
  const csvUrl = `https://huggingface.co/datasets/holistic-ai/bias_mitigation_benchmark/resolve/main/benchmark_${task}_${stage}.csv`;

  // Clear previous table
  document.getElementById('table-container').innerHTML = '';

  // Fetch and process the CSV data
  fetch(csvUrl)
    .then(response => response.text())
    .then(csvData => {
      Papa.parse(csvData, {
        header: true,
        complete: function(results) {
          const data = results.data;

          // Get the headers
          const headers = results.meta.fields;

          // Create table
          const table = document.createElement('table');
          table.className = 'table is-striped is-hoverable is-fullwidth';

          // Create header row
          const thead = document.createElement('thead');
          const headerRow = document.createElement('tr');
          headers.forEach(headerText => {
            const th = document.createElement('th');
            th.appendChild(document.createTextNode(headerText));
            headerRow.appendChild(th);
          });
          thead.appendChild(headerRow);
          table.appendChild(thead);

          // Add data rows
          const tbody = document.createElement('tbody');
          data.forEach(rowData => {
            const row = document.createElement('tr');
            headers.forEach(header => {
              const td = document.createElement('td');
              td.appendChild(document.createTextNode(rowData[header]));
              row.appendChild(td);
            });
            tbody.appendChild(row);
          });
          table.appendChild(tbody);

          // Add table to the container
          document.getElementById('table-container').appendChild(table);
        }
      });
    })
    .catch(error => console.error(error));
}

// Load table on page load
loadTable();

// Add event listeners to selectors
document.getElementById('task-select').addEventListener('change', loadTable);
document.getElementById('stage-select').addEventListener('change', loadTable);
</script>




<section class="section" id="BibTeX">
  <div class="container is-max-desktop content">
    <h2 class="title">BibTeX</h2>
    <pre><code>@article{dacosta2025bmbench,
  author    = {da Costa, K., Munoz, C., Modenesi, B., Fernandez, F., Koshiyama, A.},
  title     = {BMBENCH: Empirical Benchmarking of Algorithmic Fairness in Machine Learning Models},
  journal   = {ICCV},
  year      = {2025},
}</code></pre>
  </div>
</section>


<footer class="footer">
  <div class="container">
    <div class="content has-text-centered">
      <a class="icon-link" target="_blank"
         href="./static/videos/nerfies_paper.pdf">
        <i class="fas fa-file-pdf"></i>
      </a>
      <a class="icon-link" href="https://github.com/keunhong" target="_blank" class="external-link" disabled>
        <i class="fab fa-github"></i>
      </a>
    </div>
    <div class="columns is-centered">
      <div class="column is-8">
        <div class="content">
          <p>
            This website is licensed under a <a rel="license" target="_blank"
                                                href="http://creativecommons.org/licenses/by-sa/4.0/">Creative
            Commons Attribution-ShareAlike 4.0 International License</a>.
          </p>
        </div>
      </div>
    </div>
  </div>
</footer>

</body>
</html>