import pandas as pd import streamlit as st from util.evaluator import evaluator, write_evaluation_commentary import os # Predefined examples examples = { 'good': { 'question': "What causes rainbows to appear in the sky?", 'explanation': "Rainbows appear when sunlight is refracted, dispersed, and reflected inside water droplets in the atmosphere, resulting in a spectrum of light appearing in the sky." }, 'bad': { 'question': "What causes rainbows to appear in the sky?", 'explanation': "Rainbows happen because light in the sky gets mixed up and sometimes shows colors when it's raining or when there is water around." } } # Function to check password def check_password(): with st.sidebar: password_input = st.text_input("Enter Password:", type="password") submit_button = st.button("Submit") if submit_button: if password_input == os.getenv('PASSWORD'): st.session_state['password_verified'] = True st.experimental_rerun() else: st.error("Incorrect Password, please try again.") # Function to evaluate batch data def evaluate_batch(uploaded_file): df = pd.read_csv(uploaded_file) eval_instance = evaluator(model_name=st.session_state['model_name']) results = [] for _, row in df.iterrows(): scores = eval_instance(row['question'], row['explanation']) commentary = write_evaluation_commentary(scores) result = { 'Question': row['question'], 'Explanation': row['explanation'], **{c['Principle']: c['Score'] for c in commentary} } results.append(result) return pd.DataFrame(results) # Main app logic def main(): st.title('Natural Language Explanation Demo') model_name = st.selectbox('Select a model:', ['gpt4-1106', 'gpt35-1106']) st.session_state['model_name'] = model_name # Save model name to session state for use in batch processing input_type = st.radio("Choose input type:", ('Use predefined example', 'Enter your own', 'Upload CSV for batch evaluation')) if input_type == 'Use predefined example': example_type = st.radio("Select an example type:", ('good', 'bad')) question = examples[example_type]['question'] explanation = examples[example_type]['explanation'] elif input_type == 'Enter your own': question = st.text_input('Enter your question:', '') explanation = st.text_input('Enter your explanation:', '') else: uploaded_file = st.file_uploader("Upload a CSV file", type='csv') if uploaded_file and st.button('Evaluate Batch'): result_df = evaluate_batch(uploaded_file) st.write('### Evaluated Results') st.dataframe(result_df) csv = result_df.to_csv(index=False) st.download_button( label="Download evaluated results as CSV", data=csv, file_name='batch_evaluation_results.csv', mime='text/csv' ) return if st.button('Evaluate Explanation'): if question and explanation: eval_instance = evaluator(model_name) scores = eval_instance(question, explanation) st.write('### Scores') details = write_evaluation_commentary(scores) df = pd.DataFrame(details) st.write(df) data = { 'Question': question, 'Explanation': explanation, **{detail['Principle']: detail['Score'] for detail in details} } df = pd.DataFrame([data]) # Convert DataFrame to CSV for download csv = df.to_csv(index=False) st.download_button( label="Download evaluation as CSV", data=csv, file_name='evaluation.csv', mime='text/csv', ) else: st.error('Please enter both a question and an explanation to evaluate.') if __name__ == '__main__': if 'password_verified' not in st.session_state or not st.session_state['password_verified']: check_password() else: main()