Spaces:
Runtime error
Runtime error
Commit
·
92edcfa
1
Parent(s):
ca72b36
feat: multi programming language select
Browse files- app.py +66 -18
- src/leaderboard/read_evals.py +11 -2
- src/populate.py +30 -0
- src/submission/submit.py +1 -1
app.py
CHANGED
|
@@ -81,6 +81,38 @@ initialize_data_directories()
|
|
| 81 |
# Load data for leaderboard
|
| 82 |
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
| 83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
# Load queue data
|
| 85 |
(
|
| 86 |
finished_eval_queue_df,
|
|
@@ -96,30 +128,46 @@ def init_leaderboard(dataframe):
|
|
| 96 |
empty_df = pd.DataFrame(columns=pd.Index(all_columns))
|
| 97 |
print("Warning: Leaderboard DataFrame is empty. Using empty dataframe.")
|
| 98 |
dataframe = empty_df
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
return Leaderboard(
|
| 114 |
value=dataframe,
|
| 115 |
-
datatype=
|
| 116 |
select_columns=SelectColumns(
|
| 117 |
default_selection=[getattr(auto_eval_column_attrs, field).name for field in AutoEvalColumn.model_fields if getattr(auto_eval_column_attrs, field).displayed_by_default],
|
| 118 |
cant_deselect=[getattr(auto_eval_column_attrs, field).name for field in AutoEvalColumn.model_fields if getattr(auto_eval_column_attrs, field).never_hidden],
|
| 119 |
label="Select Columns to Display:",
|
| 120 |
),
|
| 121 |
search_columns=[auto_eval_column_attrs.library.name, auto_eval_column_attrs.license_name.name],
|
| 122 |
-
hide_columns=
|
| 123 |
filter_columns=filter_columns, # type: ignore
|
| 124 |
bool_checkboxgroup_label="Filter libraries",
|
| 125 |
interactive=False,
|
|
@@ -197,8 +245,8 @@ with demo:
|
|
| 197 |
language = gr.Dropdown(
|
| 198 |
choices=[i.value.name for i in Language if i != Language.Other],
|
| 199 |
label="Programming Language",
|
| 200 |
-
multiselect=
|
| 201 |
-
value="Python",
|
| 202 |
interactive=True,
|
| 203 |
)
|
| 204 |
framework = gr.Textbox(label="Framework/Ecosystem (e.g., PyTorch, React)")
|
|
|
|
| 81 |
# Load data for leaderboard
|
| 82 |
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
| 83 |
|
| 84 |
+
# Extract unique languages for filtering
|
| 85 |
+
def get_unique_languages(df):
|
| 86 |
+
"""Extract all unique individual languages from the Language column"""
|
| 87 |
+
if df.empty or auto_eval_column_attrs.language.name not in df.columns:
|
| 88 |
+
return []
|
| 89 |
+
|
| 90 |
+
all_languages = set()
|
| 91 |
+
for value in df[auto_eval_column_attrs.language.name].unique():
|
| 92 |
+
if isinstance(value, str):
|
| 93 |
+
if "/" in value:
|
| 94 |
+
languages = [lang.strip() for lang in value.split("/")]
|
| 95 |
+
all_languages.update(languages)
|
| 96 |
+
else:
|
| 97 |
+
all_languages.add(value.strip())
|
| 98 |
+
|
| 99 |
+
return sorted(list(all_languages))
|
| 100 |
+
|
| 101 |
+
# Create a mapping for language filtering
|
| 102 |
+
UNIQUE_LANGUAGES = get_unique_languages(LEADERBOARD_DF)
|
| 103 |
+
|
| 104 |
+
# Create a special column for individual language filtering
|
| 105 |
+
if not LEADERBOARD_DF.empty:
|
| 106 |
+
# Create a column that contains all individual languages as a list
|
| 107 |
+
LEADERBOARD_DF["_languages_list"] = LEADERBOARD_DF[auto_eval_column_attrs.language.name].apply(
|
| 108 |
+
lambda x: [lang.strip() for lang in str(x).split("/")] if pd.notna(x) else []
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
# Create a text version of Active Maintenance for checkboxgroup filtering
|
| 112 |
+
LEADERBOARD_DF["_maintenance_filter"] = LEADERBOARD_DF[auto_eval_column_attrs.availability.name].apply(
|
| 113 |
+
lambda x: "Active" if x else "Inactive"
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
# Load queue data
|
| 117 |
(
|
| 118 |
finished_eval_queue_df,
|
|
|
|
| 128 |
empty_df = pd.DataFrame(columns=pd.Index(all_columns))
|
| 129 |
print("Warning: Leaderboard DataFrame is empty. Using empty dataframe.")
|
| 130 |
dataframe = empty_df
|
| 131 |
+
|
| 132 |
+
# Create filter columns list with proper typing
|
| 133 |
+
filter_columns = []
|
| 134 |
+
|
| 135 |
+
# 1. Library types
|
| 136 |
+
filter_columns.append(ColumnFilter(auto_eval_column_attrs.library_type.name, type="checkboxgroup", label="Library types"))
|
| 137 |
+
|
| 138 |
+
# 2. Programming Language (checkboxgroup - OR filtering)
|
| 139 |
+
filter_columns.append(ColumnFilter(auto_eval_column_attrs.language.name, type="checkboxgroup", label="Programming Language"))
|
| 140 |
+
|
| 141 |
+
# 3. GitHub Stars
|
| 142 |
+
filter_columns.append(ColumnFilter(
|
| 143 |
+
auto_eval_column_attrs.stars.name,
|
| 144 |
+
type="slider",
|
| 145 |
+
min=0,
|
| 146 |
+
max=50000,
|
| 147 |
+
label="GitHub Stars",
|
| 148 |
+
))
|
| 149 |
+
|
| 150 |
+
# 4. Maintenance Status (checkboxgroup - separate from languages)
|
| 151 |
+
filter_columns.append(ColumnFilter("_maintenance_filter", type="checkboxgroup", label="Maintenance Status"))
|
| 152 |
+
|
| 153 |
+
# Hide columns
|
| 154 |
+
hidden_columns = [getattr(auto_eval_column_attrs, field).name for field in AutoEvalColumn.model_fields if getattr(auto_eval_column_attrs, field).hidden]
|
| 155 |
+
hidden_columns.extend(["_languages_list", "_maintenance_filter", "_original_language"]) # Hide helper columns
|
| 156 |
+
|
| 157 |
+
# Update datatypes
|
| 158 |
+
datatypes = [getattr(auto_eval_column_attrs, field).type for field in AutoEvalColumn.model_fields]
|
| 159 |
+
datatypes.extend(["str", "str", "str"]) # For helper columns
|
| 160 |
+
|
| 161 |
return Leaderboard(
|
| 162 |
value=dataframe,
|
| 163 |
+
datatype=datatypes,
|
| 164 |
select_columns=SelectColumns(
|
| 165 |
default_selection=[getattr(auto_eval_column_attrs, field).name for field in AutoEvalColumn.model_fields if getattr(auto_eval_column_attrs, field).displayed_by_default],
|
| 166 |
cant_deselect=[getattr(auto_eval_column_attrs, field).name for field in AutoEvalColumn.model_fields if getattr(auto_eval_column_attrs, field).never_hidden],
|
| 167 |
label="Select Columns to Display:",
|
| 168 |
),
|
| 169 |
search_columns=[auto_eval_column_attrs.library.name, auto_eval_column_attrs.license_name.name],
|
| 170 |
+
hide_columns=hidden_columns,
|
| 171 |
filter_columns=filter_columns, # type: ignore
|
| 172 |
bool_checkboxgroup_label="Filter libraries",
|
| 173 |
interactive=False,
|
|
|
|
| 245 |
language = gr.Dropdown(
|
| 246 |
choices=[i.value.name for i in Language if i != Language.Other],
|
| 247 |
label="Programming Language",
|
| 248 |
+
multiselect=True,
|
| 249 |
+
value=["Python"],
|
| 250 |
interactive=True,
|
| 251 |
)
|
| 252 |
framework = gr.Textbox(label="Framework/Ecosystem (e.g., PyTorch, React)")
|
src/leaderboard/read_evals.py
CHANGED
|
@@ -19,6 +19,7 @@ class AssessmentResult(BaseModel):
|
|
| 19 |
results: dict # Risk scores
|
| 20 |
framework: str = ""
|
| 21 |
language: Language = Language.Other
|
|
|
|
| 22 |
library_type: LibraryType = LibraryType.Unknown
|
| 23 |
license: str = "?"
|
| 24 |
stars: int = 0
|
|
@@ -58,7 +59,14 @@ class AssessmentResult(BaseModel):
|
|
| 58 |
# Library metadata
|
| 59 |
framework = assessment.get("framework", "")
|
| 60 |
language_str = assessment.get("language", "Other")
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
# Availability and verification
|
| 64 |
last_update = assessment.get("last_updated", "")
|
|
@@ -80,6 +88,7 @@ class AssessmentResult(BaseModel):
|
|
| 80 |
results=risk_scores,
|
| 81 |
framework=framework,
|
| 82 |
language=language,
|
|
|
|
| 83 |
license=assessment.get("license", "?"),
|
| 84 |
availability=assessment.get("active_maintenance", True),
|
| 85 |
verified=assessment.get("independently_verified", False),
|
|
@@ -115,7 +124,7 @@ class AssessmentResult(BaseModel):
|
|
| 115 |
"assessment_id": self.assessment_id, # not a column, just a save name
|
| 116 |
auto_eval_column_attrs.library_type.name: self.library_type.value.name,
|
| 117 |
auto_eval_column_attrs.library_type_symbol.name: self.library_type.value.symbol,
|
| 118 |
-
auto_eval_column_attrs.language.name: self.language.value.name,
|
| 119 |
auto_eval_column_attrs.framework.name: self.framework,
|
| 120 |
auto_eval_column_attrs.library.name: make_clickable_library(self.library_name),
|
| 121 |
auto_eval_column_attrs.version.name: self.version,
|
|
|
|
| 19 |
results: dict # Risk scores
|
| 20 |
framework: str = ""
|
| 21 |
language: Language = Language.Other
|
| 22 |
+
language_str: str = "" # Original language string to support multiple languages
|
| 23 |
library_type: LibraryType = LibraryType.Unknown
|
| 24 |
license: str = "?"
|
| 25 |
stars: int = 0
|
|
|
|
| 59 |
# Library metadata
|
| 60 |
framework = assessment.get("framework", "")
|
| 61 |
language_str = assessment.get("language", "Other")
|
| 62 |
+
|
| 63 |
+
# Handle multiple languages separated by /
|
| 64 |
+
if "/" in language_str:
|
| 65 |
+
language_parts = [lang.strip() for lang in language_str.split("/")]
|
| 66 |
+
# Store the full string but parse the first language for enum
|
| 67 |
+
language = next((lang for lang in Language if lang.value.name == language_parts[0]), Language.Other)
|
| 68 |
+
else:
|
| 69 |
+
language = next((lang for lang in Language if lang.value.name == language_str), Language.Other)
|
| 70 |
|
| 71 |
# Availability and verification
|
| 72 |
last_update = assessment.get("last_updated", "")
|
|
|
|
| 88 |
results=risk_scores,
|
| 89 |
framework=framework,
|
| 90 |
language=language,
|
| 91 |
+
language_str=language_str,
|
| 92 |
license=assessment.get("license", "?"),
|
| 93 |
availability=assessment.get("active_maintenance", True),
|
| 94 |
verified=assessment.get("independently_verified", False),
|
|
|
|
| 124 |
"assessment_id": self.assessment_id, # not a column, just a save name
|
| 125 |
auto_eval_column_attrs.library_type.name: self.library_type.value.name,
|
| 126 |
auto_eval_column_attrs.library_type_symbol.name: self.library_type.value.symbol,
|
| 127 |
+
auto_eval_column_attrs.language.name: self.language_str if self.language_str else self.language.value.name,
|
| 128 |
auto_eval_column_attrs.framework.name: self.framework,
|
| 129 |
auto_eval_column_attrs.library.name: make_clickable_library(self.library_name),
|
| 130 |
auto_eval_column_attrs.version.name: self.version,
|
src/populate.py
CHANGED
|
@@ -6,6 +6,33 @@ from src.display.utils import auto_eval_column_attrs
|
|
| 6 |
from src.leaderboard.read_evals import get_raw_assessment_results
|
| 7 |
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
def get_leaderboard_df(eval_results_path, eval_requests_path, cols, benchmark_cols):
|
| 10 |
"""Read all the runs in the folder and return a dataframe
|
| 11 |
|
|
@@ -26,6 +53,9 @@ def get_leaderboard_df(eval_results_path, eval_requests_path, cols, benchmark_co
|
|
| 26 |
# Create dataframe from assessment results
|
| 27 |
all_df = pd.DataFrame.from_records([r.to_dict() for r in assessment_results])
|
| 28 |
|
|
|
|
|
|
|
|
|
|
| 29 |
# Ensure we have all the needed display columns
|
| 30 |
all_columns = set(all_df.columns)
|
| 31 |
for col in benchmark_cols:
|
|
|
|
| 6 |
from src.leaderboard.read_evals import get_raw_assessment_results
|
| 7 |
|
| 8 |
|
| 9 |
+
def expand_multi_language_entries(df):
|
| 10 |
+
"""Expand multi-language entries (like 'Python/C++') into separate rows for OR filtering"""
|
| 11 |
+
if df.empty or auto_eval_column_attrs.language.name not in df.columns:
|
| 12 |
+
return df
|
| 13 |
+
|
| 14 |
+
expanded_rows = []
|
| 15 |
+
|
| 16 |
+
for idx, row in df.iterrows():
|
| 17 |
+
lang_value = row[auto_eval_column_attrs.language.name]
|
| 18 |
+
|
| 19 |
+
# If language contains /, create separate rows for each language
|
| 20 |
+
if isinstance(lang_value, str) and "/" in lang_value:
|
| 21 |
+
languages = [lang.strip() for lang in lang_value.split("/")]
|
| 22 |
+
for lang in languages:
|
| 23 |
+
new_row = row.copy()
|
| 24 |
+
new_row[auto_eval_column_attrs.language.name] = lang
|
| 25 |
+
new_row["_original_language"] = lang_value # Keep original for display
|
| 26 |
+
expanded_rows.append(new_row)
|
| 27 |
+
else:
|
| 28 |
+
# Keep single language rows as is
|
| 29 |
+
row_copy = row.copy()
|
| 30 |
+
row_copy["_original_language"] = lang_value
|
| 31 |
+
expanded_rows.append(row_copy)
|
| 32 |
+
|
| 33 |
+
return pd.DataFrame(expanded_rows).reset_index(drop=True)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
def get_leaderboard_df(eval_results_path, eval_requests_path, cols, benchmark_cols):
|
| 37 |
"""Read all the runs in the folder and return a dataframe
|
| 38 |
|
|
|
|
| 53 |
# Create dataframe from assessment results
|
| 54 |
all_df = pd.DataFrame.from_records([r.to_dict() for r in assessment_results])
|
| 55 |
|
| 56 |
+
# Expand multi-language entries for OR filtering
|
| 57 |
+
all_df = expand_multi_language_entries(all_df)
|
| 58 |
+
|
| 59 |
# Ensure we have all the needed display columns
|
| 60 |
all_columns = set(all_df.columns)
|
| 61 |
for col in benchmark_cols:
|
src/submission/submit.py
CHANGED
|
@@ -57,7 +57,7 @@ def add_new_eval(
|
|
| 57 |
"library": library_name,
|
| 58 |
"version": library_version,
|
| 59 |
"repository_url": repository_url,
|
| 60 |
-
"language": language,
|
| 61 |
"framework": framework,
|
| 62 |
"library_type": library_type.value.name,
|
| 63 |
"license": license_name,
|
|
|
|
| 57 |
"library": library_name,
|
| 58 |
"version": library_version,
|
| 59 |
"repository_url": repository_url,
|
| 60 |
+
"language": "/".join(language) if isinstance(language, list) else language,
|
| 61 |
"framework": framework,
|
| 62 |
"library_type": library_type.value.name,
|
| 63 |
"license": license_name,
|