File size: 7,168 Bytes
6f52855
 
 
 
7ea5b16
6f52855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ea5b16
6f52855
 
 
 
7ea5b16
6f52855
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# This demo needs to be run from the repo folder.
# python demo/fake_gan/run.py
import os
import random
import gradio as gr
import itertools
from PIL import Image, ImageFont, ImageDraw
import sys

sys.path.append("source")

import DirectedDiffusion

EX1 = [
    "A painting of a tiger, on the wall in the living room",
    "0.2,0.6,0.0,0.5",
    "1,5",
    5,
    15,
    1.0,
    2094889,
]


def fake_gan(a, b, c):
    print(a, b, c)
    images = [
        (
            random.choice(
                [
                    "https://images.unsplash.com/photo-1507003211169-0a1dd7228f2d?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=387&q=80",
                    "https://images.unsplash.com/photo-1554151228-14d9def656e4?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=386&q=80",
                    "https://images.unsplash.com/photo-1542909168-82c3e7fdca5c?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxzZWFyY2h8MXx8aHVtYW4lMjBmYWNlfGVufDB8fDB8fA%3D%3D&w=1000&q=80",
                    "https://images.unsplash.com/photo-1546456073-92b9f0a8d413?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=387&q=80",
                    "https://images.unsplash.com/photo-1601412436009-d964bd02edbc?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=464&q=80",
                ]
            ),
            f"label {i}" if i != 0 else "label" * 50,
        )
        for i in range(3)
    ]
    return images


model_bundle = DirectedDiffusion.AttnEditorUtils.load_all_models(
    model_path_diffusion="CompVis/stable-diffusion-v1-4"
)


def directed_diffusion(
    in_prompt,
    in_bb,
    in_token_ids,
    in_slider_trailings,
    in_slider_ddsteps,
    in_slider_gcoef,
    in_seed,
    is_draw_bbox,
):
    str_arg_to_val = lambda arg, f: [
        [f(b) for b in a.split(",")] for a in arg.split(" ")
    ]
    roi = str_arg_to_val(in_bb, float)
    attn_editor_bundle = {
        "edit_index": str_arg_to_val(in_token_ids, int),
        "roi": roi,
        "num_trailing_attn": [in_slider_trailings] * len(roi),
        "num_affected_steps": in_slider_ddsteps,
        "noise_scale": [in_slider_gcoef] * len(roi),
    }
    img = DirectedDiffusion.Diffusion.stablediffusion(
        model_bundle,
        attn_editor_bundle=attn_editor_bundle,
        guidance_scale=7.5,
        prompt=in_prompt,
        steps=50,
        seed=in_seed,
        is_save_attn=False,
        is_save_recons=False,
    )
    print(img.size)
    if is_draw_bbox and in_slider_ddsteps > 0:
        for r in roi:
            x0, y0, x1, y1 = [int(r_ * 512) for r_ in r]
            print(x0, y0, x1, y1)
            image_editable = ImageDraw.Draw(img)
            image_editable.rectangle(
                xy=[x0, y0, x1, y1], outline=(255, 0, 0, 255), width=5
            )

    return img


def run_it(
    in_prompt,
    in_bb,
    in_token_ids,
    in_slider_trailings,
    in_slider_ddsteps,
    in_slider_gcoef,
    in_seed,
    is_draw_bbox,
    is_grid_search,
    progress=gr.Progress(),
):

    num_affected_steps = [in_slider_ddsteps]
    noise_scale = [in_slider_gcoef]
    num_trailing_attn = [in_slider_trailings]
    if is_grid_search:
        num_affected_steps = [5, 10]
        #noise_scale = [1.0, 1.5, 2.5]
        #num_trailing_attn = [10, 20, 30, 40]

    param_list = [num_affected_steps, noise_scale, num_trailing_attn]
    param_list = list(itertools.product(*param_list))

    results = []
    progress(0, desc="Starting...")
    for i, element in enumerate(progress.tqdm(param_list)):
        print("=========== Arguments ============")
        print("Prompt:", in_prompt)
        print("BoundingBox:", in_bb)
        print("Token indices:", in_token_ids)
        print("Num Trialings:", element[2])
        print("Num DD steps:", element[0])
        print("Gaussian coef:", element[1])
        print("Seed:", in_seed)
        print("===================================")
        img = directed_diffusion(
            in_prompt=in_prompt,
            in_bb=in_bb,
            in_token_ids=in_token_ids,
            in_slider_trailings=element[2],
            in_slider_ddsteps=element[0],
            in_slider_gcoef=element[1],
            in_seed=in_seed,
            is_draw_bbox=is_draw_bbox,
        )
        results.append(
            (
                img,
                "#Trailing:{},#DDSteps:{},GaussianCoef:{}".format(
                    element[2], element[0], element[1]
                ),
            )
        )
    return results


with gr.Blocks() as demo:
    with gr.Row(variant="panel"):
        with gr.Column(variant="compact"):
            in_prompt = gr.Textbox(
                label="Enter your prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
            ).style(
                container=False,
            )
            with gr.Row(variant="compact"):
                in_bb = gr.Textbox(
                    label="Bounding box",
                    show_label=True,
                    max_lines=1,
                    placeholder="e.g., 0.1,0.5,0.3,0.6",
                )
                in_token_ids = gr.Textbox(
                    label="Token idices",
                    show_label=True,
                    max_lines=1,
                    placeholder="e.g., 1,2,3",
                )
                in_seed = gr.Number(
                    value=2483964026821236, label="Random seed", interactive=True
                )
            with gr.Row(variant="compact"):
                is_grid_search = gr.Checkbox(
                    value=False,
                    label="Grid search? (Checked then sliders are ignored)",
                )
                is_draw_bbox = gr.Checkbox(
                    value=True,
                    label="To draw the bounding box?",
                )
            with gr.Row(variant="compact"):
                in_slider_trailings = gr.Slider(
                    minimum=1, maximum=30, value=10, step=1, label="#trailings"
                )
                in_slider_ddsteps = gr.Slider(
                    minimum=0, maximum=20, value=10, step=1, label="#DDSteps"
                )
                in_slider_gcoef = gr.Slider(
                    minimum=1, maximum=5, value=1.0, step=0.1, label="GaussianCoef"
                )
            btn = gr.Button("Generate image").style(full_width=False)

        gallery = gr.Gallery(
            label="Generated images", show_label=False, elem_id="gallery"
        ).style(grid=[2], height="auto")

        args = [
            in_prompt,
            in_bb,
            in_token_ids,
            in_slider_trailings,
            in_slider_ddsteps,
            in_slider_gcoef,
            in_seed,
            is_draw_bbox,
            is_grid_search,
        ]

        btn.click(
            run_it,
            inputs=args,
            outputs=gallery,
        )

    examples = gr.Examples(
        examples=[EX1],
        inputs=args,
    )

if __name__ == "__main__":
    demo.queue().launch(share=True)