import gradio as gr import os import uuid import threading import pandas as pd import torch from langchain.document_loaders import CSVLoader from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import FAISS from langchain.llms import HuggingFacePipeline from langchain.chains import LLMChain from transformers import AutoTokenizer, AutoModelForCausalLM, T5Tokenizer, T5ForConditionalGeneration, pipeline from langchain.prompts import PromptTemplate import time # Global model cache MODEL_CACHE = { "model": None, "tokenizer": None, "init_lock": threading.Lock(), "model_name": None } # Create directories for user data os.makedirs("user_data", exist_ok=True) # Model configuration dictionary MODEL_CONFIG = { "Llama 2 Chat": { "name": "TheBloke/Llama-2-7B-Chat-GGUF", "description": "Llama 2 7B Chat model with good general performance", "dtype": torch.float16 if torch.cuda.is_available() else torch.float32 }, "TinyLlama Chat": { "name": "TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF", "description": "Compact 1.1B parameter model, fast but less powerful", "dtype": torch.float16 if torch.cuda.is_available() else torch.float32 }, "Mistral Instruct": { "name": "TheBloke/Mistral-7B-Instruct-v0.2-GGUF", "description": "7B instruction-tuned model with excellent reasoning", "dtype": torch.float16 if torch.cuda.is_available() else torch.float32 }, "Phi-4 Mini Instruct": { "name": "microsoft/Phi-4-mini-instruct", "description": "Compact Microsoft model with strong instruction following", "dtype": torch.float16 if torch.cuda.is_available() else torch.float32 }, "DeepSeek Coder Instruct": { "name": "deepseek-ai/deepseek-coder-1.3b-instruct", "description": "1.3B model specialized for code understanding", "dtype": torch.float16 if torch.cuda.is_available() else torch.float32 }, "DeepSeek Lite Chat": { "name": "deepseek-ai/DeepSeek-V2-Lite-Chat", "description": "Light but powerful chat model from DeepSeek", "dtype": torch.float16 if torch.cuda.is_available() else torch.float32 }, "Qwen2.5 Coder Instruct": { "name": "Qwen/Qwen2.5-Coder-3B-Instruct-GGUF", "description": "3B model specialized for code and technical applications", "dtype": torch.float16 if torch.cuda.is_available() else torch.float32 }, "DeepSeek Distill Qwen": { "name": "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", "description": "1.5B distilled model with good balance of speed and quality", "dtype": torch.float16 if torch.cuda.is_available() else torch.float32 }, "Flan T5 Small": { "name": "google/flan-t5-small", "description": "Lightweight T5 model optimized for instruction following", "dtype": torch.float16 if torch.cuda.is_available() else torch.float32, "is_t5": True } } def initialize_model_once(model_key): """Initialize the model once and cache it""" with MODEL_CACHE["init_lock"]: current_model = MODEL_CACHE["model_name"] if MODEL_CACHE["model"] is None or current_model != model_key: # Clear previous model from memory if any if MODEL_CACHE["model"] is not None: del MODEL_CACHE["model"] del MODEL_CACHE["tokenizer"] torch.cuda.empty_cache() if torch.cuda.is_available() else None model_info = MODEL_CONFIG[model_key] model_name = model_info["name"] MODEL_CACHE["model_name"] = model_key # Handle T5 models separately if model_info.get("is_t5", False): MODEL_CACHE["tokenizer"] = T5Tokenizer.from_pretrained(model_name) MODEL_CACHE["model"] = T5ForConditionalGeneration.from_pretrained( model_name, torch_dtype=model_info["dtype"], device_map="auto", low_cpu_mem_usage=True ) else: # Load tokenizer and model with appropriate configuration MODEL_CACHE["tokenizer"] = AutoTokenizer.from_pretrained(model_name) MODEL_CACHE["model"] = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=model_info["dtype"], device_map="auto", low_cpu_mem_usage=True, trust_remote_code=True ) return MODEL_CACHE["tokenizer"], MODEL_CACHE["model"], model_info.get("is_t5", False) def create_llm_pipeline(model_key): """Create a new pipeline using the specified model""" tokenizer, model, is_t5 = initialize_model_once(model_key) # Create appropriate pipeline based on model type if is_t5: pipe = pipeline( "text2text-generation", model=model, tokenizer=tokenizer, max_new_tokens=256, temperature=0.3, top_p=0.9, return_full_text=False, ) else: pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=256, temperature=0.3, top_p=0.9, top_k=30, repetition_penalty=1.2, return_full_text=False, ) # Wrap pipeline in HuggingFacePipeline for LangChain compatibility return HuggingFacePipeline(pipeline=pipe) def create_conversational_chain(db, file_path, model_key): llm = create_llm_pipeline(model_key) # Load the file into pandas to enable code execution for data analysis df = pd.read_csv(file_path) # Create improved prompt template that focuses on direct answers, not code template = """ Berikut ini adalah informasi tentang file CSV: Kolom-kolom dalam file: {columns} Beberapa baris pertama: {sample_data} Konteks tambahan dari vector database: {context} Pertanyaan: {question} INSTRUKSI PENTING: 1. Jangan tampilkan kode Python, berikan jawaban langsung dalam Bahasa Indonesia. 2. Jika pertanyaan terkait statistik data (rata-rata, maksimum dll), lakukan perhitungan dan berikan hasilnya. 3. Jawaban harus singkat, jelas dan akurat berdasarkan data yang ada. 4. Gunakan format yang sesuai untuk angka (desimal 2 digit untuk nilai non-integer). 5. Jangan menyebutkan proses perhitungan, fokus pada hasil akhir. Jawaban: """ PROMPT = PromptTemplate( template=template, input_variables=["columns", "sample_data", "context", "question"] ) # Create retriever retriever = db.as_retriever(search_kwargs={"k": 3}) # Reduced k for better performance # Process query with better error handling def process_query(query, chat_history): try: # Get information from dataframe for context columns_str = ", ".join(df.columns.tolist()) sample_data = df.head(2).to_string() # Reduced to 2 rows for performance # Get context from vector database docs = retriever.get_relevant_documents(query) context = "\n\n".join([doc.page_content for doc in docs]) # Dynamically calculate answers for common statistical queries def preprocess_query(): query_lower = query.lower() result = None # Handle statistical queries directly if "rata-rata" in query_lower or "mean" in query_lower or "average" in query_lower: for col in df.columns: if col.lower() in query_lower and pd.api.types.is_numeric_dtype(df[col]): try: result = f"Rata-rata {col} adalah {df[col].mean():.2f}" except: pass elif "maksimum" in query_lower or "max" in query_lower or "tertinggi" in query_lower: for col in df.columns: if col.lower() in query_lower and pd.api.types.is_numeric_dtype(df[col]): try: result = f"Nilai maksimum {col} adalah {df[col].max():.2f}" except: pass elif "minimum" in query_lower or "min" in query_lower or "terendah" in query_lower: for col in df.columns: if col.lower() in query_lower and pd.api.types.is_numeric_dtype(df[col]): try: result = f"Nilai minimum {col} adalah {df[col].min():.2f}" except: pass elif "total" in query_lower or "jumlah" in query_lower or "sum" in query_lower: for col in df.columns: if col.lower() in query_lower and pd.api.types.is_numeric_dtype(df[col]): try: result = f"Total {col} adalah {df[col].sum():.2f}" except: pass elif "baris" in query_lower or "jumlah data" in query_lower or "row" in query_lower: result = f"Jumlah baris data adalah {len(df)}" elif "kolom" in query_lower or "field" in query_lower: if "nama" in query_lower or "list" in query_lower or "sebutkan" in query_lower: result = f"Kolom dalam data: {', '.join(df.columns.tolist())}" return result # Try direct calculation first direct_answer = preprocess_query() if direct_answer: return {"answer": direct_answer} # If no direct calculation, use the LLM chain = LLMChain(llm=llm, prompt=PROMPT) raw_result = chain.run( columns=columns_str, sample_data=sample_data, context=context, question=query ) # Clean the result cleaned_result = raw_result.strip() # If result is empty after cleaning, use a fallback if not cleaned_result: return {"answer": "Tidak dapat memproses jawaban. Silakan coba pertanyaan lain."} return {"answer": cleaned_result} except Exception as e: import traceback print(f"Error in process_query: {str(e)}") print(traceback.format_exc()) return {"answer": f"Terjadi kesalahan saat memproses pertanyaan: {str(e)}"} return process_query class ChatBot: def __init__(self, session_id, model_key="DeepSeek Coder Instruct"): self.session_id = session_id self.chat_history = [] self.chain = None self.user_dir = f"user_data/{session_id}" self.csv_file_path = None self.model_key = model_key os.makedirs(self.user_dir, exist_ok=True) def process_file(self, file, model_key=None): if model_key: self.model_key = model_key if file is None: return "Mohon upload file CSV terlebih dahulu." try: # Handle file from Gradio file_path = file.name if hasattr(file, 'name') else str(file) self.csv_file_path = file_path # Copy to user directory user_file_path = f"{self.user_dir}/uploaded.csv" # Verify the CSV can be loaded try: df = pd.read_csv(file_path) print(f"CSV verified: {df.shape[0]} rows, {len(df.columns)} columns") # Save a copy in user directory df.to_csv(user_file_path, index=False) self.csv_file_path = user_file_path except Exception as e: return f"Error membaca CSV: {str(e)}" # Load document with reduced chunk size for better memory usage try: loader = CSVLoader(file_path=file_path, encoding="utf-8", csv_args={ 'delimiter': ','}) data = loader.load() print(f"Documents loaded: {len(data)}") except Exception as e: return f"Error loading documents: {str(e)}" # Create vector database with optimized settings try: db_path = f"{self.user_dir}/db_faiss" # Use CPU-friendly embeddings with smaller dimensions embeddings = HuggingFaceEmbeddings( model_name='sentence-transformers/all-MiniLM-L6-v2', model_kwargs={'device': 'cpu'} ) db = FAISS.from_documents(data, embeddings) db.save_local(db_path) print(f"Vector database created at {db_path}") except Exception as e: return f"Error creating vector database: {str(e)}" # Create custom chain try: self.chain = create_conversational_chain(db, self.csv_file_path, self.model_key) print(f"Chain created successfully using model: {self.model_key}") except Exception as e: return f"Error creating chain: {str(e)}" # Add basic file info to chat history for context file_info = f"CSV berhasil dimuat dengan {df.shape[0]} baris dan {len(df.columns)} kolom menggunakan model {self.model_key}. Kolom: {', '.join(df.columns.tolist())}" self.chat_history.append(("System", file_info)) return f"File CSV berhasil diproses dengan model {self.model_key}! Anda dapat mulai chat dengan model untuk analisis data." except Exception as e: import traceback print(traceback.format_exc()) return f"Error pemrosesan file: {str(e)}" def change_model(self, model_key): """Change the model being used and recreate the chain if necessary""" if model_key == self.model_key: return f"Model {model_key} sudah digunakan." self.model_key = model_key # If we have an active session with a file already loaded, recreate the chain if self.csv_file_path: try: # Load existing database db_path = f"{self.user_dir}/db_faiss" embeddings = HuggingFaceEmbeddings( model_name='sentence-transformers/all-MiniLM-L6-v2', model_kwargs={'device': 'cpu'} ) db = FAISS.load_local(db_path, embeddings) # Create new chain with the selected model self.chain = create_conversational_chain(db, self.csv_file_path, self.model_key) return f"Model berhasil diubah ke {model_key}." except Exception as e: return f"Error mengubah model: {str(e)}" else: return f"Model diubah ke {model_key}. Silakan upload file CSV untuk memulai." def chat(self, message, history): if self.chain is None: return "Mohon upload file CSV terlebih dahulu." try: # Process the question with the chain result = self.chain(message, self.chat_history) # Get the answer with fallback answer = result.get("answer", "Maaf, tidak dapat menghasilkan jawaban. Silakan coba pertanyaan lain.") # Ensure we never return empty if not answer or answer.strip() == "": answer = "Maaf, tidak dapat menghasilkan jawaban yang sesuai. Silakan coba pertanyaan lain." # Update internal chat history self.chat_history.append((message, answer)) # Return just the answer for Gradio return answer except Exception as e: import traceback print(traceback.format_exc()) return f"Error: {str(e)}" # UI Code def create_gradio_interface(): with gr.Blocks(title="Chat with CSV using AI Models") as interface: session_id = gr.State(lambda: str(uuid.uuid4())) chatbot_state = gr.State(lambda: None) # Get model choices model_choices = list(MODEL_CONFIG.keys()) default_model = "DeepSeek Coder Instruct" # Default model gr.HTML("