Spaces:
Sleeping
Sleeping
File size: 9,218 Bytes
71a08c8 a61644e 71a08c8 a61644e 71a08c8 a61644e 71a08c8 a61644e 71a08c8 a61644e 71a08c8 a61644e 71a08c8 a61644e 71a08c8 a61644e 71a08c8 a61644e 71a08c8 a61644e 71a08c8 a61644e 71a08c8 a61644e 71a08c8 a61644e 71a08c8 a61644e 71a08c8 a61644e 71a08c8 a61644e 71a08c8 a61644e 71a08c8 a61644e 71a08c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import gradio as gr
import os
import uuid
import threading
import pandas as pd
from langchain.document_loaders.csv_loader import CSVLoader
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.llms import HuggingFacePipeline
from langchain.chains import ConversationalRetrievalChain
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
# Global model cache
MODEL_CACHE = {
"model": None,
"init_lock": threading.Lock()
}
# Create directories for user data
os.makedirs("user_data", exist_ok=True)
def initialize_model_once():
"""Initialize model once using pipeline API"""
with MODEL_CACHE["init_lock"]:
if MODEL_CACHE["model"] is None:
# Load model from Hugging Face Hub
model_id = "meta-llama/Llama-2-7b-chat-hf"
# Tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id, token=os.environ.get("HF_TOKEN"))
# Model with low precision
model = AutoModelForCausalLM.from_pretrained(
model_id,
token=os.environ.get("HF_TOKEN"),
device_map="auto",
load_in_8bit=True # Quantize model to 8-bit precision
)
# Create pipeline
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=512,
temperature=0.2,
top_p=0.9,
repetition_penalty=1.2
)
# Create LangChain wrapper
MODEL_CACHE["model"] = HuggingFacePipeline(pipeline=pipe)
return MODEL_CACHE["model"]
class ChatBot:
def __init__(self, session_id):
self.session_id = session_id
self.chat_history = []
self.chain = None
self.user_dir = f"user_data/{session_id}"
os.makedirs(self.user_dir, exist_ok=True)
def process_file(self, file):
if file is None:
return "Mohon upload file CSV terlebih dahulu."
try:
# Handle file from Gradio
file_path = file.name if hasattr(file, 'name') else str(file)
# Verify and save CSV
try:
df = pd.read_csv(file_path)
user_file_path = f"{self.user_dir}/uploaded.csv"
df.to_csv(user_file_path, index=False)
print(f"CSV verified: {df.shape[0]} rows, {len(df.columns)} columns")
except Exception as e:
return f"Error membaca CSV: {str(e)}"
# Load document
try:
loader = CSVLoader(file_path=file_path, encoding="utf-8", csv_args={'delimiter': ','})
data = loader.load()
print(f"Documents loaded: {len(data)}")
except Exception as e:
return f"Error loading documents: {str(e)}"
# Create vector database
try:
db_path = f"{self.user_dir}/db_faiss"
embeddings = HuggingFaceEmbeddings(
model_name='sentence-transformers/all-MiniLM-L6-v2',
model_kwargs={'device': 'auto'}
)
db = FAISS.from_documents(data, embeddings)
db.save_local(db_path)
print(f"Vector database created at {db_path}")
except Exception as e:
return f"Error creating vector database: {str(e)}"
# Create LLM and chain
try:
llm = initialize_model_once()
self.chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=db.as_retriever(search_kwargs={"k": 4})
)
print("Chain created successfully")
except Exception as e:
return f"Error creating chain: {str(e)}"
# Add file info to chat history
file_info = f"CSV berhasil dimuat dengan {df.shape[0]} baris dan {len(df.columns)} kolom. Kolom: {', '.join(df.columns.tolist())}"
self.chat_history.append(("System", file_info))
return "File CSV berhasil diproses! Anda dapat mulai chat dengan model Llama 2."
except Exception as e:
import traceback
print(traceback.format_exc())
return f"Error pemrosesan file: {str(e)}"
def chat(self, message, history):
if self.chain is None:
return "Mohon upload file CSV terlebih dahulu."
try:
# Process with the chain
result = self.chain({"question": message, "chat_history": self.chat_history})
# Update chat history
answer = result["answer"]
self.chat_history.append((message, answer))
return answer
except Exception as e:
import traceback
print(traceback.format_exc())
return f"Error: {str(e)}"
# UI Code dan handler functions sama seperti sebelumnya
def create_gradio_interface():
with gr.Blocks(title="Chat with CSV using Llama2 🦙") as interface:
session_id = gr.State(lambda: str(uuid.uuid4()))
chatbot_state = gr.State(lambda: None)
gr.HTML("<h1 style='text-align: center;'>Chat with CSV using Llama2 🦙</h1>")
gr.HTML("<h3 style='text-align: center;'>Asisten analisis CSV yang powerfull</h3>")
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(
label="Upload CSV Anda",
file_types=[".csv"]
)
process_button = gr.Button("Proses CSV")
with gr.Accordion("Informasi Model", open=False):
gr.Markdown("""
**Model**: Llama-2-7b-chat-hf
**Fitur**:
- Dioptimalkan untuk analisis data dan percakapan
- Menggunakan API Hugging Face untuk efisiensi
- Manajemen sesi per pengguna
""")
with gr.Column(scale=2):
chatbot_interface = gr.Chatbot(
label="Riwayat Chat",
height=400
)
message_input = gr.Textbox(
label="Ketik pesan Anda",
placeholder="Tanyakan tentang data CSV Anda...",
lines=2
)
submit_button = gr.Button("Kirim")
clear_button = gr.Button("Bersihkan Chat")
# Handler functions
def handle_process_file(file, sess_id):
chatbot = ChatBot(sess_id)
result = chatbot.process_file(file)
return chatbot, [(None, result)]
process_button.click(
fn=handle_process_file,
inputs=[file_input, session_id],
outputs=[chatbot_state, chatbot_interface]
)
def user_message_submitted(message, history, chatbot, sess_id):
history = history + [(message, None)]
return history, "", chatbot, sess_id
def bot_response(history, chatbot, sess_id):
if chatbot is None:
chatbot = ChatBot(sess_id)
history[-1] = (history[-1][0], "Mohon upload file CSV terlebih dahulu.")
return chatbot, history
user_message = history[-1][0]
response = chatbot.chat(user_message, history[:-1])
history[-1] = (user_message, response)
return chatbot, history
submit_button.click(
fn=user_message_submitted,
inputs=[message_input, chatbot_interface, chatbot_state, session_id],
outputs=[chatbot_interface, message_input, chatbot_state, session_id]
).then(
fn=bot_response,
inputs=[chatbot_interface, chatbot_state, session_id],
outputs=[chatbot_state, chatbot_interface]
)
message_input.submit(
fn=user_message_submitted,
inputs=[message_input, chatbot_interface, chatbot_state, session_id],
outputs=[chatbot_interface, message_input, chatbot_state, session_id]
).then(
fn=bot_response,
inputs=[chatbot_interface, chatbot_state, session_id],
outputs=[chatbot_state, chatbot_interface]
)
def handle_clear_chat(chatbot):
if chatbot is not None:
chatbot.chat_history = []
return chatbot, []
clear_button.click(
fn=handle_clear_chat,
inputs=[chatbot_state],
outputs=[chatbot_state, chatbot_interface]
)
return interface
# Launch the interface
if __name__ == "__main__":
demo = create_gradio_interface()
demo.launch(share=True) |