Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
|
| 5 |
+
# Load the data from the CSV file
|
| 6 |
+
@st.cache
|
| 7 |
+
def load_data():
|
| 8 |
+
df = pd.read_csv("llm_data.csv") # Update with your CSV file path
|
| 9 |
+
return df
|
| 10 |
+
|
| 11 |
+
df = load_data()
|
| 12 |
+
|
| 13 |
+
# Calculate example cost
|
| 14 |
+
def calculate_example_cost(input_text, output_text, input_ratio=0.000001, output_ratio=0.000001):
|
| 15 |
+
input_tokens = len(input_text) / 5
|
| 16 |
+
output_tokens = len(output_text) / 5
|
| 17 |
+
example_cost = (input_tokens * input_ratio) + (output_tokens * output_ratio)
|
| 18 |
+
return example_cost
|
| 19 |
+
|
| 20 |
+
# Sidebar inputs
|
| 21 |
+
input_text = st.sidebar.text_area("Input text")
|
| 22 |
+
output_text = st.sidebar.text_area("Output text")
|
| 23 |
+
|
| 24 |
+
# Calculate example cost for each row
|
| 25 |
+
df['Example cost'] = df.apply(lambda row: calculate_example_cost(input_text, output_text, row['Input'], row['Output']), axis=1)
|
| 26 |
+
|
| 27 |
+
# Display sorted LLM costs
|
| 28 |
+
st.write("Sorted LLM Costs:")
|
| 29 |
+
sorted_df = df.sort_values(by='Example cost', ascending=False)
|
| 30 |
+
st.write(sorted_df[['Company', 'Model', 'Example cost']])
|
| 31 |
+
|
| 32 |
+
# Plot visualization
|
| 33 |
+
st.write("Visualization of LLM Costs:")
|
| 34 |
+
plt.figure(figsize=(10, 6))
|
| 35 |
+
plt.barh(sorted_df['Model'], sorted_df['Example cost'], color='skyblue')
|
| 36 |
+
plt.xlabel('Example Cost')
|
| 37 |
+
plt.ylabel('LLM Model')
|
| 38 |
+
plt.title('LLM Usage Cost')
|
| 39 |
+
st.pyplot(plt)
|