Spaces:
Runtime error
Runtime error
Hector Lopez
commited on
Commit
·
ba92502
1
Parent(s):
e4cd286
Implemented gradio
Browse files- app.py +37 -55
- requirements.txt +1 -0
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
import
|
2 |
import PIL
|
3 |
import torch
|
4 |
|
@@ -9,65 +9,47 @@ from model import get_model, predict, prepare_prediction, predict_class
|
|
9 |
DET_CKPT = 'efficientDet_icevision.ckpt'
|
10 |
CLASS_CKPT = 'class_ViT_taco_7_class.pth'
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
st.subheader('Example Images')
|
19 |
-
|
20 |
-
example_imgs = [
|
21 |
-
'example_imgs/basura_4_2.jpg',
|
22 |
-
'example_imgs/basura_1.jpg',
|
23 |
-
'example_imgs/basura_3.jpg'
|
24 |
-
]
|
25 |
-
|
26 |
-
with st.container() as cont:
|
27 |
-
st.image(example_imgs[0], width=150, caption='1')
|
28 |
-
if st.button('Select Image', key='Image_1'):
|
29 |
-
image_file = example_imgs[0]
|
30 |
-
|
31 |
-
with st.container() as cont:
|
32 |
-
st.image(example_imgs[1], width=150, caption='2')
|
33 |
-
if st.button('Select Image', key='Image_2'):
|
34 |
-
image_file = example_imgs[1]
|
35 |
-
|
36 |
-
with st.container() as cont:
|
37 |
-
st.image(example_imgs[2], width=150, caption='2')
|
38 |
-
if st.button('Select Image', key='Image_3'):
|
39 |
-
image_file = example_imgs[2]
|
40 |
-
|
41 |
-
st.subheader('Detection parameters')
|
42 |
-
|
43 |
-
detection_threshold = st.slider('Detection threshold',
|
44 |
-
min_value=0.0,
|
45 |
-
max_value=1.0,
|
46 |
-
value=0.5,
|
47 |
-
step=0.1)
|
48 |
-
|
49 |
-
nms_threshold = st.slider('NMS threshold',
|
50 |
-
min_value=0.0,
|
51 |
-
max_value=1.0,
|
52 |
-
value=0.3,
|
53 |
-
step=0.1)
|
54 |
-
|
55 |
-
st.subheader('Prediction')
|
56 |
-
|
57 |
-
if image_file is not None:
|
58 |
print('Getting predictions')
|
59 |
-
|
60 |
-
data = image_file
|
61 |
-
else:
|
62 |
-
data = image_file.read()
|
63 |
-
pred_dict = predict(det_model, data, detection_threshold)
|
64 |
print('Fixing the preds')
|
65 |
boxes, image = prepare_prediction(pred_dict, nms_threshold)
|
66 |
|
67 |
print('Predicting classes')
|
68 |
labels = predict_class(classifier, image, boxes)
|
69 |
print('Plotting')
|
70 |
-
plot_img_no_mask(image, boxes, labels)
|
71 |
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
import PIL
|
3 |
import torch
|
4 |
|
|
|
9 |
DET_CKPT = 'efficientDet_icevision.ckpt'
|
10 |
CLASS_CKPT = 'class_ViT_taco_7_class.pth'
|
11 |
|
12 |
+
def waste_detector_interface(
|
13 |
+
image,
|
14 |
+
detection_threshold,
|
15 |
+
nms_threshold
|
16 |
+
):
|
17 |
+
det_model, classifier = get_models(DET_CKPT, CLASS_CKPT)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
print('Getting predictions')
|
19 |
+
pred_dict = predict(det_model, image, detection_threshold)
|
|
|
|
|
|
|
|
|
20 |
print('Fixing the preds')
|
21 |
boxes, image = prepare_prediction(pred_dict, nms_threshold)
|
22 |
|
23 |
print('Predicting classes')
|
24 |
labels = predict_class(classifier, image, boxes)
|
25 |
print('Plotting')
|
|
|
26 |
|
27 |
+
return plot_img_no_mask(image, boxes, labels)
|
28 |
+
|
29 |
+
inputs = [
|
30 |
+
gr.inputs.Image(type="pil", label="Original Image"),
|
31 |
+
gr.inputs.Number(default=0.5, label="detection_threshold"),
|
32 |
+
gr.inputs.Number(default=0.5, label="nms_threshold"),
|
33 |
+
]
|
34 |
+
|
35 |
+
outputs = [
|
36 |
+
gr.outputs.Image(type="plot", label="Prediction"),
|
37 |
+
]
|
38 |
+
|
39 |
+
title = 'Waste Detection'
|
40 |
+
description = 'Demo for waste object detection. It detects and classify waste in images according to which rubbish bin the waste should be thrown. Upload an image or click an image to use.'
|
41 |
+
examples = [
|
42 |
+
['example_imgs/basura_4_2.jpg', 0.5, 0.5],
|
43 |
+
['example_imgs/basura_1.jpg', 0.5, 0.5],
|
44 |
+
['example_imgs/basura_3.jpg', 0.5, 0.5]
|
45 |
+
]
|
46 |
+
|
47 |
+
gr.Interface(
|
48 |
+
waste_detector_interface,
|
49 |
+
inputs,
|
50 |
+
outputs,
|
51 |
+
title=title,
|
52 |
+
description=description,
|
53 |
+
examples=examples,
|
54 |
+
theme="huggingface",
|
55 |
+
).launch(share=True, enable_queue=True)
|
requirements.txt
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
icevision[all]
|
2 |
matplotlib
|
3 |
effdet
|
|
|
4 |
streamlit==1.2.0
|
5 |
Pillow==8.4.0
|
|
|
1 |
icevision[all]
|
2 |
matplotlib
|
3 |
effdet
|
4 |
+
gradio
|
5 |
streamlit==1.2.0
|
6 |
Pillow==8.4.0
|