File size: 5,966 Bytes
d0b5dce
eec7921
 
 
d0b5dce
eec7921
d0b5dce
 
 
0ad2349
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eec7921
 
561f8a4
 
eec7921
 
 
 
561f8a4
d0b5dce
eec7921
 
d0b5dce
eec7921
d0b5dce
eec7921
 
 
d0b5dce
eec7921
 
 
d0b5dce
eec7921
 
d0b5dce
0ad2349
 
 
 
 
d0b5dce
0ad2349
eec7921
 
 
 
d0b5dce
 
 
eec7921
d0b5dce
eec7921
 
 
 
d0b5dce
 
eec7921
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0b5dce
eec7921
 
 
 
d0b5dce
eec7921
 
 
 
 
0ad2349
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eec7921
d0b5dce
eec7921
 
d0b5dce
 
 
eec7921
 
d0b5dce
eec7921
 
 
 
 
 
d0b5dce
 
eec7921
 
 
 
0ad2349
 
 
 
 
 
 
 
 
 
 
d0b5dce
0ad2349
d0b5dce
 
 
 
0ad2349
d0b5dce
 
 
 
0ad2349
d0b5dce
 
 
 
0ad2349
d0b5dce
 
eec7921
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
from typing import List

import gradio as gr
import numpy as np
import pandas as pd

_ORIGINAL_DF = pd.read_csv("./data/benchmark.csv")
_METRICS = ["MCC", "F1", "ACC"]
_AGGREGATION_METHODS = ["mean", "max", "min", "median"]
_TASKS = {
    "histone_marks": [
        "H4",
        "H3",
        "H3K14ac",
        "H3K4me1",
        "H3K4me3",
        "H3K4me2",
        "H3K36me3",
        "H4ac",
        "H3K79me3",
        "H3K9ac",
    ],
    "regulatory_elements": [
        "promoter_no_tata",
        "enhancers",
        "enhancers_types",
        "promoter_all",
        "promoter_tata",
    ],
    "RNA_production": [
        "splice_sites_donors",
        "splice_sites_all",
        "splice_sites_acceptors",
    ],
}

_BIBTEX = """@article{DallaTorre2023TheNT,
  title={The Nucleotide Transformer: Building and Evaluating Robust Foundation Models for Human Genomics},
  author={Hugo Dalla-Torre and Liam Gonzalez and Javier Mendoza Revilla and Nicolas Lopez Carranza and Adam Henryk Grzywaczewski and Francesco Oteri and Christian Dallago and Evan Trop and Hassan Sirelkhatim and Guillaume Richard and Marcin J. Skwark and Karim Beguir and Marie Lopez and Thomas Pierrot},
  journal={bioRxiv},
  year={2023},
  url={https://api.semanticscholar.org/CorpusID:255943445}
}
"""  # noqa
_LAST_UPDATED = "Aug 28, 2023"

banner_url = "./assets/logo.png"
_BANNER = f'<div style="display: flex; justify-content: space-around;"><img src="{banner_url}" alt="Banner" style="width: 40vw; min-width: 300px; max-width: 600px;"> </div>'  # noqa

_INTRODUCTION_TEXT = "The πŸ€— Nucleotide Transformer Leaderboard aims to track, rank and evaluate DNA foundational models on a set of curated downstream tasks with a standardized evaluation protocole."  # noqa


def retrieve_array_from_text(text):
    return np.fromstring(text.replace("[", "").replace("]", ""), dtype=float, sep=",")


def format_number(x):
    return float(f"{x:.3}")


def get_dataset(
    histone_tasks: List[str],
    regulatory_tasks: List[str],
    rna_tasks: List[str],
    target_metric: str = "MCC",
    aggregation_method: str = "mean",
):
    tasks = histone_tasks + regulatory_tasks + rna_tasks

    aggr_fn = getattr(np, aggregation_method)
    scores = _ORIGINAL_DF[target_metric].apply(retrieve_array_from_text).apply(aggr_fn)
    scores = scores.apply(format_number)
    df = _ORIGINAL_DF.drop(columns=_METRICS)
    df["Score"] = scores
    df = df.pivot(index="Model", columns="Dataset", values="Score")
    df = df[tasks]
    df["All Tasks"] = df.agg("mean", axis="columns").apply(format_number)
    columns = list(df.columns.values)
    columns.sort()
    df = df[columns]
    df.reset_index(inplace=True)
    df = df.rename(columns={"index": "Model"})
    df = df.sort_values(by=["All Tasks"], ascending=False)

    leaderboard_table = gr.components.Dataframe.update(
        value=df,
        # datatype=TYPES,
        max_rows=None,
        interactive=False,
        visible=True,
    )
    return leaderboard_table


with gr.Blocks() as demo:
    with gr.Row():
        gr.Image(banner_url, height=160, scale=1)
        gr.Textbox(_INTRODUCTION_TEXT, scale=5)

    with gr.Row():
        metric_choice = gr.Dropdown(
            choices=_METRICS,
            value="MCC",
            label="Metric displayed.",
        )
        aggr_choice = gr.Dropdown(
            choices=_AGGREGATION_METHODS,
            value="mean",
            label="Aggregation used over 10-folds.",
        )

    with gr.Row():
        regulatory_tasks = gr.CheckboxGroup(
            choices=_TASKS["regulatory_elements"],
            value=_TASKS["regulatory_elements"],
            label="Regulatory Elements Downstream Tasks",
            info="Human data.",
        )
        rna_tasks = gr.CheckboxGroup(
            choices=_TASKS["RNA_production"],
            value=_TASKS["RNA_production"],
            label="RNA Production Downstream tasks.",
            info="Human data.",
        )
        histone_tasks = gr.CheckboxGroup(
            choices=_TASKS["histone_marks"],
            label="Histone Modification Downstream Tasks",
            info="Yeast data.",
        )

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ… Leaderboard", elem_id="od-benchmark-tab-table", id=0):
            dataframe = gr.components.Dataframe(
                elem_id="leaderboard-table",
            )

        with gr.TabItem("πŸ“ˆ Metrics", elem_id="od-benchmark-tab-table", id=1):
            gr.Markdown("Hey hey hey", elem_classes="markdown-text")

    gr.Markdown(f"Last updated on **{_LAST_UPDATED}**", elem_classes="markdown-text")

    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            gr.Textbox(
                value=_BIBTEX,
                lines=7,
                label="Copy the BibTeX snippet to cite this source",
                elem_id="citation-button",
            ).style(show_copy_button=True)

    histone_tasks.change(
        get_dataset,
        inputs=[histone_tasks, regulatory_tasks, rna_tasks, metric_choice, aggr_choice],
        outputs=dataframe,
    )
    regulatory_tasks.change(
        get_dataset,
        inputs=[histone_tasks, regulatory_tasks, rna_tasks, metric_choice, aggr_choice],
        outputs=dataframe,
    )
    rna_tasks.change(
        get_dataset,
        inputs=[histone_tasks, regulatory_tasks, rna_tasks, metric_choice, aggr_choice],
        outputs=dataframe,
    )
    metric_choice.change(
        get_dataset,
        inputs=[histone_tasks, regulatory_tasks, rna_tasks, metric_choice, aggr_choice],
        outputs=dataframe,
    )
    aggr_choice.change(
        get_dataset,
        inputs=[histone_tasks, regulatory_tasks, rna_tasks, metric_choice, aggr_choice],
        outputs=dataframe,
    )
    demo.load(
        fn=get_dataset,
        inputs=[histone_tasks, regulatory_tasks, rna_tasks, metric_choice, aggr_choice],
        outputs=dataframe,
    )

demo.launch()