{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "ed9bad4c-b546-43cd-b11d-39da03e3b2fc",
"metadata": {
"execution": {
"iopub.execute_input": "2023-11-25T03:08:25.222203Z",
"iopub.status.busy": "2023-11-25T03:08:25.221934Z",
"iopub.status.idle": "2023-11-25T03:09:12.123983Z",
"shell.execute_reply": "2023-11-25T03:09:12.123211Z",
"shell.execute_reply.started": "2023-11-25T03:08:25.222184Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cpu:\n",
"Collecting pandas\n",
" Downloading pandas-2.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.4 MB)\n",
" |████████████████████████████████| 12.4 MB 9.3 MB/s \n",
"\u001b[?25hRequirement already satisfied: python-dateutil>=2.8.2 in /opt/pytorch/lib/python3.8/site-packages (from pandas) (2.8.2)\n",
"Requirement already satisfied: numpy>=1.20.3 in /opt/pytorch/lib/python3.8/site-packages (from pandas) (1.21.6)\n",
"Requirement already satisfied: pytz>=2020.1 in /opt/pytorch/lib/python3.8/site-packages (from pandas) (2023.3)\n",
"Collecting tzdata>=2022.1\n",
" Downloading tzdata-2023.3-py2.py3-none-any.whl (341 kB)\n",
" |████████████████████████████████| 341 kB 89.1 MB/s \n",
"\u001b[?25hRequirement already satisfied: six>=1.5 in /opt/pytorch/lib/python3.8/site-packages (from python-dateutil>=2.8.2->pandas) (1.16.0)\n",
"Installing collected packages: tzdata, pandas\n",
"Successfully installed pandas-2.0.3 tzdata-2023.3\n",
"Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cpu:\n",
"Collecting scikit-learn\n",
" Downloading scikit_learn-1.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.1 MB)\n",
" |████████████████████████████████| 11.1 MB 9.1 MB/s \n",
"\u001b[?25hCollecting threadpoolctl>=2.0.0\n",
" Downloading threadpoolctl-3.2.0-py3-none-any.whl (15 kB)\n",
"Collecting joblib>=1.1.1\n",
" Downloading joblib-1.3.2-py3-none-any.whl (302 kB)\n",
" |████████████████████████████████| 302 kB 71.4 MB/s \n",
"\u001b[?25hCollecting scipy>=1.5.0\n",
" Downloading scipy-1.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (34.5 MB)\n",
" |████████████████████████████████| 34.5 MB 70.3 MB/s \n",
"\u001b[?25hRequirement already satisfied: numpy<2.0,>=1.17.3 in /opt/pytorch/lib/python3.8/site-packages (from scikit-learn) (1.21.6)\n",
"Installing collected packages: threadpoolctl, scipy, joblib, scikit-learn\n",
"Successfully installed joblib-1.3.2 scikit-learn-1.3.2 scipy-1.10.1 threadpoolctl-3.2.0\n",
"Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cpu:\n",
"Collecting datasets\n",
" Downloading datasets-2.15.0-py3-none-any.whl (521 kB)\n",
" |████████████████████████████████| 521 kB 8.7 MB/s \n",
"\u001b[?25hRequirement already satisfied: numpy>=1.17 in /opt/pytorch/lib/python3.8/site-packages (from datasets) (1.21.6)\n",
"Collecting fsspec[http]<=2023.10.0,>=2023.1.0\n",
" Downloading fsspec-2023.10.0-py3-none-any.whl (166 kB)\n",
" |████████████████████████████████| 166 kB 31.8 MB/s \n",
"\u001b[?25hCollecting pyarrow-hotfix\n",
" Downloading pyarrow_hotfix-0.6-py3-none-any.whl (7.9 kB)\n",
"Collecting dill<0.3.8,>=0.3.0\n",
" Downloading dill-0.3.7-py3-none-any.whl (115 kB)\n",
" |████████████████████████████████| 115 kB 29.8 MB/s \n",
"\u001b[?25hRequirement already satisfied: requests>=2.19.0 in /opt/pytorch/lib/python3.8/site-packages (from datasets) (2.31.0)\n",
"Requirement already satisfied: tqdm>=4.62.1 in /opt/pytorch/lib/python3.8/site-packages (from datasets) (4.65.0)\n",
"Requirement already satisfied: pandas in /opt/pytorch/lib/python3.8/site-packages (from datasets) (2.0.3)\n",
"Collecting huggingface-hub>=0.18.0\n",
" Downloading huggingface_hub-0.19.4-py3-none-any.whl (311 kB)\n",
" |████████████████████████████████| 311 kB 35.9 MB/s \n",
"\u001b[?25hRequirement already satisfied: packaging in /opt/pytorch/lib/python3.8/site-packages (from datasets) (23.1)\n",
"Requirement already satisfied: pyyaml>=5.1 in /opt/pytorch/lib/python3.8/site-packages (from datasets) (5.4.1)\n",
"Collecting xxhash\n",
" Downloading xxhash-3.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (194 kB)\n",
" |████████████████████████████████| 194 kB 51.7 MB/s \n",
"\u001b[?25hCollecting pyarrow>=8.0.0\n",
" Downloading pyarrow-14.0.1-cp38-cp38-manylinux_2_28_x86_64.whl (38.1 MB)\n",
" |████████████████████████████████| 38.1 MB 88.8 MB/s \n",
"\u001b[?25hCollecting multiprocess\n",
" Downloading multiprocess-0.70.15-py38-none-any.whl (132 kB)\n",
" |████████████████████████████████| 132 kB 63.6 MB/s \n",
"\u001b[?25hCollecting aiohttp\n",
" Downloading aiohttp-3.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB)\n",
" |████████████████████████████████| 1.3 MB 29.4 MB/s \n",
"\u001b[?25hCollecting async-timeout<5.0,>=4.0\n",
" Downloading async_timeout-4.0.3-py3-none-any.whl (5.7 kB)\n",
"Collecting multidict<7.0,>=4.5\n",
" Downloading multidict-6.0.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (121 kB)\n",
" |████████████████████████████████| 121 kB 68.5 MB/s \n",
"\u001b[?25hCollecting aiosignal>=1.1.2\n",
" Downloading aiosignal-1.3.1-py3-none-any.whl (7.6 kB)\n",
"Collecting frozenlist>=1.1.1\n",
" Downloading frozenlist-1.4.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (220 kB)\n",
" |████████████████████████████████| 220 kB 73.2 MB/s \n",
"\u001b[?25hRequirement already satisfied: attrs>=17.3.0 in /opt/pytorch/lib/python3.8/site-packages (from aiohttp->datasets) (23.1.0)\n",
"Collecting yarl<2.0,>=1.0\n",
" Downloading yarl-1.9.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (307 kB)\n",
" |████████████████████████████████| 307 kB 17.4 MB/s \n",
"\u001b[?25hRequirement already satisfied: filelock in /opt/pytorch/lib/python3.8/site-packages (from huggingface-hub>=0.18.0->datasets) (3.12.2)\n",
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /opt/pytorch/lib/python3.8/site-packages (from huggingface-hub>=0.18.0->datasets) (4.7.1)\n",
"Requirement already satisfied: urllib3<3,>=1.21.1 in /opt/pytorch/lib/python3.8/site-packages (from requests>=2.19.0->datasets) (1.26.16)\n",
"Requirement already satisfied: idna<4,>=2.5 in /opt/pytorch/lib/python3.8/site-packages (from requests>=2.19.0->datasets) (3.4)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /opt/pytorch/lib/python3.8/site-packages (from requests>=2.19.0->datasets) (2023.5.7)\n",
"Requirement already satisfied: charset-normalizer<4,>=2 in /opt/pytorch/lib/python3.8/site-packages (from requests>=2.19.0->datasets) (3.1.0)\n",
"Requirement already satisfied: pytz>=2020.1 in /opt/pytorch/lib/python3.8/site-packages (from pandas->datasets) (2023.3)\n",
"Requirement already satisfied: python-dateutil>=2.8.2 in /opt/pytorch/lib/python3.8/site-packages (from pandas->datasets) (2.8.2)\n",
"Requirement already satisfied: tzdata>=2022.1 in /opt/pytorch/lib/python3.8/site-packages (from pandas->datasets) (2023.3)\n",
"Requirement already satisfied: six>=1.5 in /opt/pytorch/lib/python3.8/site-packages (from python-dateutil>=2.8.2->pandas->datasets) (1.16.0)\n",
"Installing collected packages: multidict, frozenlist, yarl, async-timeout, aiosignal, fsspec, dill, aiohttp, xxhash, pyarrow-hotfix, pyarrow, multiprocess, huggingface-hub, datasets\n",
"Successfully installed aiohttp-3.9.0 aiosignal-1.3.1 async-timeout-4.0.3 datasets-2.15.0 dill-0.3.7 frozenlist-1.4.0 fsspec-2023.10.0 huggingface-hub-0.19.4 multidict-6.0.4 multiprocess-0.70.15 pyarrow-14.0.1 pyarrow-hotfix-0.6 xxhash-3.4.1 yarl-1.9.3\n",
"Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cpu:\n",
"Collecting transformers\n",
" Downloading transformers-4.35.2-py3-none-any.whl (7.9 MB)\n",
" |████████████████████████████████| 7.9 MB 12.9 MB/s \n",
"\u001b[?25hRequirement already satisfied: numpy>=1.17 in /opt/pytorch/lib/python3.8/site-packages (from transformers) (1.21.6)\n",
"Requirement already satisfied: pyyaml>=5.1 in /opt/pytorch/lib/python3.8/site-packages (from transformers) (5.4.1)\n",
"Collecting regex!=2019.12.17\n",
" Downloading regex-2023.10.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (776 kB)\n",
" |████████████████████████████████| 776 kB 48.5 MB/s \n",
"\u001b[?25hRequirement already satisfied: tqdm>=4.27 in /opt/pytorch/lib/python3.8/site-packages (from transformers) (4.65.0)\n",
"Collecting safetensors>=0.3.1\n",
" Downloading safetensors-0.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB)\n",
" |████████████████████████████████| 1.3 MB 87.5 MB/s \n",
"\u001b[?25hRequirement already satisfied: huggingface-hub<1.0,>=0.16.4 in /opt/pytorch/lib/python3.8/site-packages (from transformers) (0.19.4)\n",
"Requirement already satisfied: packaging>=20.0 in /opt/pytorch/lib/python3.8/site-packages (from transformers) (23.1)\n",
"Collecting tokenizers<0.19,>=0.14\n",
" Downloading tokenizers-0.15.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.8 MB)\n",
" |████████████████████████████████| 3.8 MB 123.4 MB/s \n",
"\u001b[?25hRequirement already satisfied: requests in /opt/pytorch/lib/python3.8/site-packages (from transformers) (2.31.0)\n",
"Requirement already satisfied: filelock in /opt/pytorch/lib/python3.8/site-packages (from transformers) (3.12.2)\n",
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /opt/pytorch/lib/python3.8/site-packages (from huggingface-hub<1.0,>=0.16.4->transformers) (4.7.1)\n",
"Requirement already satisfied: fsspec>=2023.5.0 in /opt/pytorch/lib/python3.8/site-packages (from huggingface-hub<1.0,>=0.16.4->transformers) (2023.10.0)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /opt/pytorch/lib/python3.8/site-packages (from requests->transformers) (2023.5.7)\n",
"Requirement already satisfied: charset-normalizer<4,>=2 in /opt/pytorch/lib/python3.8/site-packages (from requests->transformers) (3.1.0)\n",
"Requirement already satisfied: urllib3<3,>=1.21.1 in /opt/pytorch/lib/python3.8/site-packages (from requests->transformers) (1.26.16)\n",
"Requirement already satisfied: idna<4,>=2.5 in /opt/pytorch/lib/python3.8/site-packages (from requests->transformers) (3.4)\n",
"Installing collected packages: tokenizers, safetensors, regex, transformers\n",
"Successfully installed regex-2023.10.3 safetensors-0.4.0 tokenizers-0.15.0 transformers-4.35.2\n",
"Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cpu:\n",
"Requirement already satisfied: transformers[torch] in /opt/pytorch/lib/python3.8/site-packages (4.35.2)\n",
"Requirement already satisfied: tokenizers<0.19,>=0.14 in /opt/pytorch/lib/python3.8/site-packages (from transformers[torch]) (0.15.0)\n",
"Requirement already satisfied: numpy>=1.17 in /opt/pytorch/lib/python3.8/site-packages (from transformers[torch]) (1.21.6)\n",
"Requirement already satisfied: requests in /opt/pytorch/lib/python3.8/site-packages (from transformers[torch]) (2.31.0)\n",
"Requirement already satisfied: filelock in /opt/pytorch/lib/python3.8/site-packages (from transformers[torch]) (3.12.2)\n",
"Requirement already satisfied: tqdm>=4.27 in /opt/pytorch/lib/python3.8/site-packages (from transformers[torch]) (4.65.0)\n",
"Requirement already satisfied: regex!=2019.12.17 in /opt/pytorch/lib/python3.8/site-packages (from transformers[torch]) (2023.10.3)\n",
"Requirement already satisfied: packaging>=20.0 in /opt/pytorch/lib/python3.8/site-packages (from transformers[torch]) (23.1)\n",
"Requirement already satisfied: pyyaml>=5.1 in /opt/pytorch/lib/python3.8/site-packages (from transformers[torch]) (5.4.1)\n",
"Requirement already satisfied: safetensors>=0.3.1 in /opt/pytorch/lib/python3.8/site-packages (from transformers[torch]) (0.4.0)\n",
"Requirement already satisfied: huggingface-hub<1.0,>=0.16.4 in /opt/pytorch/lib/python3.8/site-packages (from transformers[torch]) (0.19.4)\n",
"Collecting accelerate>=0.20.3\n",
" Downloading accelerate-0.24.1-py3-none-any.whl (261 kB)\n",
" |████████████████████████████████| 261 kB 9.6 MB/s \n",
"\u001b[?25hRequirement already satisfied: torch!=1.12.0,>=1.10 in /opt/pytorch/lib/python3.8/site-packages (from transformers[torch]) (2.0.1+cpu)\n",
"Requirement already satisfied: psutil in /opt/pytorch/lib/python3.8/site-packages (from accelerate>=0.20.3->transformers[torch]) (5.9.5)\n",
"Requirement already satisfied: fsspec>=2023.5.0 in /opt/pytorch/lib/python3.8/site-packages (from huggingface-hub<1.0,>=0.16.4->transformers[torch]) (2023.10.0)\n",
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /opt/pytorch/lib/python3.8/site-packages (from huggingface-hub<1.0,>=0.16.4->transformers[torch]) (4.7.1)\n",
"Requirement already satisfied: sympy in /opt/pytorch/lib/python3.8/site-packages (from torch!=1.12.0,>=1.10->transformers[torch]) (1.12)\n",
"Requirement already satisfied: networkx in /opt/pytorch/lib/python3.8/site-packages (from torch!=1.12.0,>=1.10->transformers[torch]) (3.1)\n",
"Requirement already satisfied: jinja2 in /opt/pytorch/lib/python3.8/site-packages (from torch!=1.12.0,>=1.10->transformers[torch]) (3.1.2)\n",
"Requirement already satisfied: charset-normalizer<4,>=2 in /opt/pytorch/lib/python3.8/site-packages (from requests->transformers[torch]) (3.1.0)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /opt/pytorch/lib/python3.8/site-packages (from requests->transformers[torch]) (2023.5.7)\n",
"Requirement already satisfied: urllib3<3,>=1.21.1 in /opt/pytorch/lib/python3.8/site-packages (from requests->transformers[torch]) (1.26.16)\n",
"Requirement already satisfied: idna<4,>=2.5 in /opt/pytorch/lib/python3.8/site-packages (from requests->transformers[torch]) (3.4)\n",
"Requirement already satisfied: MarkupSafe>=2.0 in /opt/pytorch/lib/python3.8/site-packages (from jinja2->torch!=1.12.0,>=1.10->transformers[torch]) (2.1.3)\n",
"Requirement already satisfied: mpmath>=0.19 in /opt/pytorch/lib/python3.8/site-packages (from sympy->torch!=1.12.0,>=1.10->transformers[torch]) (1.3.0)\n",
"Installing collected packages: accelerate\n",
"Successfully installed accelerate-0.24.1\n",
"Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cpu:\n",
"Requirement already satisfied: accelerate in /opt/pytorch/lib/python3.8/site-packages (0.24.1)\n",
"Requirement already satisfied: psutil in /opt/pytorch/lib/python3.8/site-packages (from accelerate) (5.9.5)\n",
"Requirement already satisfied: huggingface-hub in /opt/pytorch/lib/python3.8/site-packages (from accelerate) (0.19.4)\n",
"Requirement already satisfied: torch>=1.10.0 in /opt/pytorch/lib/python3.8/site-packages (from accelerate) (2.0.1+cpu)\n",
"Requirement already satisfied: packaging>=20.0 in /opt/pytorch/lib/python3.8/site-packages (from accelerate) (23.1)\n",
"Requirement already satisfied: pyyaml in /opt/pytorch/lib/python3.8/site-packages (from accelerate) (5.4.1)\n",
"Requirement already satisfied: numpy>=1.17 in /opt/pytorch/lib/python3.8/site-packages (from accelerate) (1.21.6)\n",
"Requirement already satisfied: sympy in /opt/pytorch/lib/python3.8/site-packages (from torch>=1.10.0->accelerate) (1.12)\n",
"Requirement already satisfied: networkx in /opt/pytorch/lib/python3.8/site-packages (from torch>=1.10.0->accelerate) (3.1)\n",
"Requirement already satisfied: jinja2 in /opt/pytorch/lib/python3.8/site-packages (from torch>=1.10.0->accelerate) (3.1.2)\n",
"Requirement already satisfied: filelock in /opt/pytorch/lib/python3.8/site-packages (from torch>=1.10.0->accelerate) (3.12.2)\n",
"Requirement already satisfied: typing-extensions in /opt/pytorch/lib/python3.8/site-packages (from torch>=1.10.0->accelerate) (4.7.1)\n",
"Requirement already satisfied: requests in /opt/pytorch/lib/python3.8/site-packages (from huggingface-hub->accelerate) (2.31.0)\n",
"Requirement already satisfied: fsspec>=2023.5.0 in /opt/pytorch/lib/python3.8/site-packages (from huggingface-hub->accelerate) (2023.10.0)\n",
"Requirement already satisfied: tqdm>=4.42.1 in /opt/pytorch/lib/python3.8/site-packages (from huggingface-hub->accelerate) (4.65.0)\n",
"Requirement already satisfied: MarkupSafe>=2.0 in /opt/pytorch/lib/python3.8/site-packages (from jinja2->torch>=1.10.0->accelerate) (2.1.3)\n",
"Requirement already satisfied: urllib3<3,>=1.21.1 in /opt/pytorch/lib/python3.8/site-packages (from requests->huggingface-hub->accelerate) (1.26.16)\n",
"Requirement already satisfied: idna<4,>=2.5 in /opt/pytorch/lib/python3.8/site-packages (from requests->huggingface-hub->accelerate) (3.4)\n",
"Requirement already satisfied: charset-normalizer<4,>=2 in /opt/pytorch/lib/python3.8/site-packages (from requests->huggingface-hub->accelerate) (3.1.0)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /opt/pytorch/lib/python3.8/site-packages (from requests->huggingface-hub->accelerate) (2023.5.7)\n",
"Requirement already satisfied: mpmath>=0.19 in /opt/pytorch/lib/python3.8/site-packages (from sympy->torch>=1.10.0->accelerate) (1.3.0)\n"
]
}
],
"source": [
"! pip install pandas\n",
"! pip install scikit-learn\n",
"! pip install datasets\n",
"! pip install transformers\n",
"! pip install transformers[torch]\n",
"! pip install accelerate -U"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "fed20656-1f48-40d6-93e2-53aec7de522e",
"metadata": {
"execution": {
"iopub.execute_input": "2023-11-25T03:09:12.125910Z",
"iopub.status.busy": "2023-11-25T03:09:12.125577Z",
"iopub.status.idle": "2023-11-25T03:09:18.835267Z",
"shell.execute_reply": "2023-11-25T03:09:18.834607Z",
"shell.execute_reply.started": "2023-11-25T03:09:12.125891Z"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bcd589e60cf34ea9a3336f439162493e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"config.json: 0%| | 0.00/768 [00:00, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8e15325a648c4600b86d5bf7843f4e17",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"vocab.json: 0%| | 0.00/899k [00:00, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "843081a871244baaac981a9314fbe9ce",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"merges.txt: 0%| | 0.00/456k [00:00, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "73b439c39e7e45abb4647f7b2a234cdf",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"special_tokens_map.json: 0%| | 0.00/150 [00:00, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "442db42ec20b42e499a53724fe071386",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"pytorch_model.bin: 0%| | 0.00/499M [00:00, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Some weights of RobertaForSequenceClassification were not initialized from the model checkpoint at cardiffnlp/twitter-roberta-base-emotion and are newly initialized because the shapes did not match:\n",
"- classifier.out_proj.weight: found shape torch.Size([4, 768]) in the checkpoint and torch.Size([3, 768]) in the model instantiated\n",
"- classifier.out_proj.bias: found shape torch.Size([4]) in the checkpoint and torch.Size([3]) in the model instantiated\n",
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3385afba67e74f2a9346b0270da2b4c9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Map: 0%| | 0/4749 [00:00, ? examples/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Asking to pad to max_length but no maximum length is provided and the model has no predefined maximum length. Default to no padding.\n",
"Asking to truncate to max_length but no maximum length is provided and the model has no predefined maximum length. Default to no truncation.\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "73fc1be3f9814543befa7cc8024957d5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Map: 0%| | 0/1188 [00:00, ? examples/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import torch\n",
"import pandas as pd\n",
"\n",
"from sklearn.preprocessing import LabelEncoder\n",
"from datasets import Dataset\n",
"from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer\n",
"from transformers import RobertaConfig, RobertaForSequenceClassification\n",
"from transformers import AdamW\n",
"\n",
"# Define a new classification head\n",
"class NewClassificationHead(torch.nn.Module):\n",
" def __init__(self, config):\n",
" super().__init__()\n",
" self.dense = torch.nn.Linear(config.hidden_size, config.hidden_size)\n",
" self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)\n",
" self.out_proj = torch.nn.Linear(config.hidden_size, config.num_labels)\n",
"\n",
" def forward(self, features, **kwargs):\n",
" x = features[:, 0, :] # take token (equiv. to [CLS])\n",
" x = self.dropout(x)\n",
" x = self.dense(x)\n",
" x = torch.nn.functional.relu(x)\n",
" x = self.dropout(x)\n",
" x = self.out_proj(x)\n",
" return x\n",
"\n",
"def preprocess_data(df):\n",
" ## rename columns\n",
" df = df.rename(columns={'Comment': 'text', 'Emotion': 'label'})\n",
"\n",
" ## remove rows with missing values\n",
" df = df.dropna()\n",
" df['text'] = df['text'].str.replace('\\t', ' ') # Remove extra spaces - this line replaces any occurrence of two or more spaces with a single spac\n",
" df['text'] = df['text'].str.replace(' +', ' ', regex=True) # Remove extra spaces - this line replaces any occurrence of two or more spaces with a single space\n",
" df['text'] = df['text'].str.strip() # Remove extra spaces - this line replaces any occurrence of two or more spaces with a single space\n",
"\n",
" df['label'] = df['label'].str.replace('\\t', ' ') # Remove extra spaces - this line replaces any occurrence of two or more spaces with a single spac\n",
" df['label'] = df['label'].str.replace(' +', ' ', regex=True) # Remove extra spaces - this line replaces any occurrence of two or more spaces with a single space\n",
" df['label'] = df['label'].str.strip() # Remove extra spaces - this line replaces any occurrence of two or more spaces with a single space \n",
"\n",
" return df\n",
"\n",
"def encode_label(df):\n",
" le = LabelEncoder()\n",
" df['label'] = le.fit_transform(df['label'])\n",
" label_mapping = {label: index for index, label in enumerate(le.classes_)}\n",
" df['label'].map(label_mapping)\n",
" return df\n",
"\n",
"def generate_dataset(df, test_size=0.2):\n",
" \"\"\"\n",
" Convert to transformers dataset and split into train and test\n",
" \"\"\"\n",
" dataset = Dataset.from_pandas(df)\n",
" ds = dataset.train_test_split(test_size=test_size)\n",
" return ds\n",
"\n",
"def tokenize(batch):\n",
" return tokenizer(batch['text'], padding='max_length', truncation=True)\n",
"\n",
"\n",
"def compute_metrics(pred):\n",
" from sklearn.metrics import accuracy_score, precision_recall_fscore_support\n",
" labels = pred.label_ids\n",
" preds = pred.predictions.argmax(-1)\n",
" precision, recall, f1, _ = precision_recall_fscore_support(labels, preds, average='weighted')\n",
" acc = accuracy_score(labels, preds)\n",
" return {\n",
" 'accuracy': acc,\n",
" 'f1': f1,\n",
" 'precision': precision,\n",
" 'recall': recall\n",
" }\n",
"\n",
"# Define model and training arguments\n",
"model_name = \"cardiffnlp/twitter-roberta-base-emotion\"\n",
"tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
"config = RobertaConfig.from_pretrained(model_name, num_labels=3) # Set the number of labels to 3\n",
"model = RobertaForSequenceClassification.from_pretrained(model_name, config=config, ignore_mismatched_sizes=True)\n",
"model.classifier = NewClassificationHead(config)\n",
"\n",
"df = pd.read_csv('Emotion_classify_Data.csv')\n",
"df = preprocess_data(df)\n",
"df = encode_label(df)\n",
"ds = generate_dataset(df)\n",
"ds = ds.map(tokenize, batched=True)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "f3dd5334-f8b4-4f0d-b696-939f2d5174ba",
"metadata": {
"execution": {
"iopub.execute_input": "2023-11-25T03:09:18.836520Z",
"iopub.status.busy": "2023-11-25T03:09:18.836241Z",
"iopub.status.idle": "2023-11-25T03:09:18.845692Z",
"shell.execute_reply": "2023-11-25T03:09:18.844909Z",
"shell.execute_reply.started": "2023-11-25T03:09:18.836502Z"
}
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/opt/pytorch/lib/python3.8/site-packages/transformers/optimization.py:411: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n",
" warnings.warn(\n"
]
}
],
"source": [
"# Freeze all layers first\n",
"for param in model.parameters():\n",
" param.requires_grad = False\n",
"\n",
"# Unfreeze the classifier layer\n",
"for param in model.classifier.parameters():\n",
" param.requires_grad = True\n",
"\n",
"\n",
"# Define different learning rates\n",
"head_lr = 3e-4 # Higher learning rate for the head\n",
"base_lr = head_lr/5 # Lower learning rate for the base layers\n",
"\n",
"# Group parameters and set learning rates\n",
"optimizer_grouped_parameters = [\n",
" {'params': model.classifier.parameters(), 'lr': head_lr},\n",
" {'params': [p for n, p in model.named_parameters() if 'classifier' not in n], 'lr': base_lr}\n",
"]\n",
"\n",
"optimizer = AdamW(optimizer_grouped_parameters)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "882c5342-a82a-4e5a-b0ad-eaaa4978831f",
"metadata": {
"execution": {
"iopub.execute_input": "2023-11-25T03:09:18.847637Z",
"iopub.status.busy": "2023-11-25T03:09:18.847285Z",
"iopub.status.idle": "2023-11-25T03:09:18.862687Z",
"shell.execute_reply": "2023-11-25T03:09:18.862118Z",
"shell.execute_reply.started": "2023-11-25T03:09:18.847619Z"
}
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Detected kernel version 5.4.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n"
]
}
],
"source": [
"training_args = TrainingArguments(\n",
" output_dir='./results', \n",
" num_train_epochs=10, \n",
" per_device_train_batch_size=16, \n",
" per_device_eval_batch_size=64, \n",
" warmup_steps=500, \n",
" weight_decay=0.01, \n",
" logging_dir='./logs',\n",
" save_strategy=\"no\",\n",
")\n",
"\n",
"trainer = Trainer(\n",
" model=model,\n",
" args=training_args,\n",
" train_dataset=ds['train'],\n",
" eval_dataset=ds['test'],\n",
" tokenizer=tokenizer,\n",
" optimizers=(optimizer, None), # No need to pass a learning rate scheduler if you're managing learning rates manually,\n",
" compute_metrics=compute_metrics\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "19f8b2f1-d03b-42c2-a0a1-2475f2dfde37",
"metadata": {
"execution": {
"iopub.execute_input": "2023-11-25T03:09:18.864992Z",
"iopub.status.busy": "2023-11-25T03:09:18.864819Z",
"iopub.status.idle": "2023-11-25T03:17:56.086914Z",
"shell.execute_reply": "2023-11-25T03:17:56.085959Z",
"shell.execute_reply.started": "2023-11-25T03:09:18.864977Z"
}
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"You're using a RobertaTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.\n"
]
},
{
"data": {
"text/html": [
"\n",
" \n",
" \n",
"
\n",
" \n",
" \n",
" \n",
" Step \n",
" Training Loss \n",
" \n",
" \n",
" 500 \n",
" 0.678100 \n",
" \n",
" \n",
" 1000 \n",
" 0.537700 \n",
" \n",
" \n",
" 1500 \n",
" 0.514900 \n",
" \n",
" \n",
" 2000 \n",
" 0.474500 \n",
" \n",
" \n",
" \n",
"2500 \n",
" 0.450500 \n",
"
"
],
"text/plain": [
" "
],
"text/plain": [
"\n",
" \n",
"
\n",
" \n",
" \n",
" \n",
" Step \n",
" Training Loss \n",
" \n",
" \n",
" 500 \n",
" 0.253200 \n",
" \n",
" \n",
" \n",
"1000 \n",
" 0.105000 \n",
"