import gradio as gr import openai from kokoro import KPipeline import random import os import torch import time # Set up the OpenAI API key (optional) openai.api_key = None # Will be set by the user through the UI # Check if GPU is available CUDA_AVAILABLE = torch.cuda.is_available() # Initialize the models and pipelines (for TTS) models = {gpu: KModel().to('cuda' if gpu else 'cpu').eval() for gpu in [False] + ([True] if CUDA_AVAILABLE else [])} pipelines = {lang_code: KPipeline(lang_code=lang_code, model=False) for lang_code in 'abefhijpz'} # Load lexicon for specific languages pipelines['a'].g2p.lexicon.golds['kokoro'] = 'kˈOkəɹO' pipelines['b'].g2p.lexicon.golds['kokoro'] = 'kˈQkəɹQ' # Initialize random texts for generating sample text random_texts = {} for lang in ['en']: with open(f'{lang}.txt', 'r') as r: random_texts[lang] = [line.strip() for line in r] def get_random_text(voice): lang = dict(a='en', b='en')[voice[0]] return random.choice(random_texts[lang]) # Generate function to create speech from text def generate_first(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE): pipeline = pipelines[voice[0]] pack = pipeline.load_voice(voice) use_gpu = use_gpu and CUDA_AVAILABLE for _, ps, _ in pipeline(text, voice, speed): ref_s = pack[len(ps)-1] try: if use_gpu: audio = forward_gpu(ps, ref_s, speed) else: audio = models[False](ps, ref_s, speed) except gr.exceptions.Error as e: if use_gpu: gr.Warning(str(e)) gr.Info('Retrying with CPU. To avoid this error, change Hardware to CPU.') audio = models[False](ps, ref_s, speed) else: raise gr.Error(e) return (24000, audio.numpy()), ps return None, '' # Translator function using OpenAI API def translate_to_english(api_key, text, lang_code): openai.api_key = api_key try: prompt = f"Translate the following text from {lang_code} to English: \n\n{text}" response = openai.ChatCompletion.create( model="gpt-4", messages=[{"role": "system", "content": "You are a helpful assistant that translates text."}, {"role": "user", "content": prompt}] ) translated_text = response['choices'][0]['message']['content'].strip() return translated_text except Exception as e: return f"Error: {str(e)}" def generate_audio_from_text(text, lang_code, voice, speed, use_gpu=True): pipeline = pipelines[lang_code] pack = pipeline.load_voice(voice) use_gpu = use_gpu and CUDA_AVAILABLE for _, ps, _ in pipeline(text, voice, speed): ref_s = pack[len(ps)-1] try: if use_gpu: audio = forward_gpu(ps, ref_s, speed) else: audio = models[False](ps, ref_s, speed) except gr.exceptions.Error as e: if use_gpu: gr.Warning(str(e)) gr.Info('Switching to CPU') audio = models[False](ps, ref_s, speed) else: raise gr.Error(e) return (24000, audio.numpy()) # Gradio interface setup with gr.Blocks() as app: gr.Markdown("### Kokoro Text-to-Speech with Translation") with gr.Row(): with gr.Column(): # Input for text and language settings input_text = gr.Textbox(label="Enter Text", placeholder="Type your text here...") voice = gr.Dropdown(list(CHOICES.items()), value='af_heart', label='Voice') use_gpu = gr.Checkbox(label="Use GPU", value=CUDA_AVAILABLE) speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label="Speed") openai_api_key = gr.Textbox(label="Enter OpenAI API Key (for translation)", type="password") random_btn = gr.Button("Random Text") with gr.Column(): out_audio = gr.Audio(label="Generated Audio", interactive=False, autoplay=True) out_text = gr.Textbox(label="Generated Audio Tokens", interactive=False) generate_btn = gr.Button("Generate Audio") translate_btn = gr.Button("Translate and Generate Audio") random_btn.click(fn=get_random_text, inputs=[voice], outputs=[input_text]) def handle_translation(text, api_key, lang_code, voice, speed, use_gpu): translated_text = translate_to_english(api_key, text, lang_code) translated_audio = generate_audio_from_text(translated_text, 'a', voice, speed, use_gpu) return translated_audio, translated_text translate_btn.click(fn=handle_translation, inputs=[input_text, openai_api_key, voice, speed, use_gpu], outputs=[out_audio, out_text]) def generate_and_play(text, voice, speed, use_gpu): audio, tokens = generate_first(text, voice, speed, use_gpu) return audio, tokens generate_btn.click(fn=generate_and_play, inputs=[input_text, voice, speed, use_gpu], outputs=[out_audio, out_text]) app.launch()