Update app.py
Browse files
app.py
CHANGED
@@ -19,7 +19,7 @@ def forward_gpu(ps, ref_s, speed):
|
|
19 |
return models[True](ps, ref_s, speed)
|
20 |
|
21 |
def generate_first(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
|
22 |
-
text = text
|
23 |
pipeline = pipelines[voice[0]]
|
24 |
pack = pipeline.load_voice(voice)
|
25 |
use_gpu = use_gpu and CUDA_AVAILABLE
|
@@ -50,7 +50,7 @@ def tokenize_first(text, voice='af_heart'):
|
|
50 |
return words # Return a list of words
|
51 |
|
52 |
def generate_all(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
|
53 |
-
text = text
|
54 |
pipeline = pipelines[voice[0]]
|
55 |
pack = pipeline.load_voice(voice)
|
56 |
use_gpu = use_gpu and CUDA_AVAILABLE
|
@@ -163,7 +163,9 @@ with gr.Blocks() as generate_tab:
|
|
163 |
predict_btn = gr.Button('Predict', variant='secondary', visible=False)
|
164 |
|
165 |
BANNER_TEXT = '''
|
166 |
-
|
|
|
|
|
167 |
'''
|
168 |
|
169 |
API_OPEN = os.getenv('SPACE_ID') != 'hexgrad/Kokoro-TTS'
|
@@ -173,38 +175,22 @@ with gr.Blocks() as app:
|
|
173 |
gr.Markdown(BANNER_TEXT, container=True)
|
174 |
with gr.Row():
|
175 |
with gr.Column():
|
176 |
-
text = gr.Textbox(
|
177 |
-
label='Input Text',
|
178 |
-
info=f"Up to ~5000 characters per Generate"
|
179 |
-
)
|
180 |
with gr.Row():
|
181 |
-
voice = gr.Dropdown(
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
|
|
|
|
186 |
)
|
187 |
-
|
188 |
-
|
189 |
-
speed = gr.Slider(
|
190 |
-
minimum=0.5,
|
191 |
-
maximum=2,
|
192 |
-
value=1,
|
193 |
-
step=0.1,
|
194 |
-
label='Speech Rate'
|
195 |
-
)
|
196 |
-
|
197 |
with gr.Column():
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
generate_btn.click(
|
203 |
-
fn=generate_first,
|
204 |
-
inputs=[text, voice, speed],
|
205 |
-
outputs=[out_audio, out_ps],
|
206 |
-
api_name=API_NAME
|
207 |
-
)
|
208 |
tokenize_btn.click(fn=tokenize_first, inputs=[text, voice], outputs=[out_ps], api_name=API_NAME)
|
209 |
predict_btn.click(fn=predict, inputs=[text, voice, speed], outputs=[out_audio], api_name=API_NAME)
|
210 |
|
|
|
19 |
return models[True](ps, ref_s, speed)
|
20 |
|
21 |
def generate_first(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
|
22 |
+
text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT]
|
23 |
pipeline = pipelines[voice[0]]
|
24 |
pack = pipeline.load_voice(voice)
|
25 |
use_gpu = use_gpu and CUDA_AVAILABLE
|
|
|
50 |
return words # Return a list of words
|
51 |
|
52 |
def generate_all(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
|
53 |
+
text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT]
|
54 |
pipeline = pipelines[voice[0]]
|
55 |
pack = pipeline.load_voice(voice)
|
56 |
use_gpu = use_gpu and CUDA_AVAILABLE
|
|
|
163 |
predict_btn = gr.Button('Predict', variant='secondary', visible=False)
|
164 |
|
165 |
BANNER_TEXT = '''
|
166 |
+
[***Kokoro*** **is an open-weight TTS model with 82 million parameters.**](https://huggingface.co/hexgrad/Kokoro-82M)
|
167 |
+
This is our work on Kokoro TTS [**V1 Model GPU**](https://shukdevdatta123-kokoro-tts-translate-gpu.hf.space) and the next version Kokoro TTS [**V2 Model CPU**](https://shukdevdatta123-kokoro-tts.hf.space).
|
168 |
+
If you would like to use our V2 Model with GPU, then go to this [link](https://colab.research.google.com/drive/1DIpBzJSBBeTcpkyxkHcpngLumMapEWQz?usp=sharing).
|
169 |
'''
|
170 |
|
171 |
API_OPEN = os.getenv('SPACE_ID') != 'hexgrad/Kokoro-TTS'
|
|
|
175 |
gr.Markdown(BANNER_TEXT, container=True)
|
176 |
with gr.Row():
|
177 |
with gr.Column():
|
178 |
+
text = gr.Textbox(label='Input Text', info=f"Up to ~500 characters per Generate, or {'∞' if CHAR_LIMIT is None else CHAR_LIMIT} characters per Stream")
|
|
|
|
|
|
|
179 |
with gr.Row():
|
180 |
+
voice = gr.Dropdown(list(CHOICES.items()), value='af_heart', label='Voice', info='Quality and availability vary by language')
|
181 |
+
use_gpu = gr.Dropdown(
|
182 |
+
[('ZeroGPU 🚀', True), ('CPU 🐌', False)],
|
183 |
+
value=CUDA_AVAILABLE,
|
184 |
+
label='Hardware',
|
185 |
+
info='GPU is usually faster, but has a usage quota',
|
186 |
+
interactive=CUDA_AVAILABLE
|
187 |
)
|
188 |
+
speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label='Speed')
|
189 |
+
random_btn = gr.Button('Random Text', variant='secondary')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
with gr.Column():
|
191 |
+
gr.TabbedInterface([generate_tab], ['Generate'])
|
192 |
+
random_btn.click(fn=get_random_text, inputs=[voice], outputs=[text], api_name=API_NAME)
|
193 |
+
generate_btn.click(fn=generate_first, inputs=[text, voice, speed, use_gpu], outputs=[out_audio, out_ps], api_name=API_NAME)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
tokenize_btn.click(fn=tokenize_first, inputs=[text, voice], outputs=[out_ps], api_name=API_NAME)
|
195 |
predict_btn.click(fn=predict, inputs=[text, voice, speed], outputs=[out_audio], api_name=API_NAME)
|
196 |
|