| import spaces | |
| from kokoro import KModel, KPipeline | |
| import gradio as gr | |
| import os | |
| import random | |
| import torch | |
| IS_DUPLICATE = not os.getenv('SPACE_ID', '').startswith('hexgrad/') | |
| CHAR_LIMIT = None if IS_DUPLICATE else 5000 | |
| CUDA_AVAILABLE = torch.cuda.is_available() | |
| models = {gpu: KModel().to('cuda' if gpu else 'cpu').eval() for gpu in [False] + ([True] if CUDA_AVAILABLE else [])} | |
| pipelines = {lang_code: KPipeline(lang_code=lang_code, model=False) for lang_code in 'abefhijpz'} | |
| pipelines['a'].g2p.lexicon.golds['kokoro'] = 'kˈOkəɹO' | |
| pipelines['b'].g2p.lexicon.golds['kokoro'] = 'kˈQkəɹQ' | |
| @spaces.GPU(duration=10) | |
| def forward_gpu(ps, ref_s, speed): | |
| return models[True](ps, ref_s, speed) | |
| def generate_first(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE): | |
| text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT] | |
| pipeline = pipelines[voice[0]] | |
| pack = pipeline.load_voice(voice) | |
| use_gpu = use_gpu and CUDA_AVAILABLE | |
| for _, ps, _ in pipeline(text, voice, speed): | |
| ref_s = pack[len(ps)-1] | |
| try: | |
| if use_gpu: | |
| audio = forward_gpu(ps, ref_s, speed) | |
| else: | |
| audio = models[False](ps, ref_s, speed) | |
| except gr.exceptions.Error as e: | |
| if use_gpu: | |
| gr.Warning(str(e)) | |
| gr.Info('Retrying with CPU. To avoid this error, change Hardware to CPU.') | |
| audio = models[False](ps, ref_s, speed) | |
| else: | |
| raise gr.Error(e) | |
| return (24000, audio.numpy()), ps | |
| return None, '' | |
| # Arena API | |
| def predict(text, voice='af_heart', speed=1): | |
| return generate_first(text, voice, speed, use_gpu=False)[0] | |
| def tokenize_first(text, voice='af_heart'): | |
| # Split the input text into words and return as a list of words (fix applied here) | |
| words = text.split() # This splits the text into words based on spaces | |
| return words # Return a list of words | |
| def generate_all(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE): | |
| text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT] | |
| pipeline = pipelines[voice[0]] | |
| pack = pipeline.load_voice(voice) | |
| use_gpu = use_gpu and CUDA_AVAILABLE | |
| for _, ps, _ in pipeline(text, voice, speed): | |
| ref_s = pack[len(ps)-1] | |
| try: | |
| if use_gpu: | |
| audio = forward_gpu(ps, ref_s, speed) | |
| else: | |
| audio = models[False](ps, ref_s, speed) | |
| except gr.exceptions.Error as e: | |
| if use_gpu: | |
| gr.Warning(str(e)) | |
| gr.Info('Switching to CPU') | |
| audio = models[False](ps, ref_s, speed) | |
| else: | |
| raise gr.Error(e) | |
| yield 24000, audio.numpy() | |
| random_texts = {} | |
| for lang in ['en']: | |
| with open(f'{lang}.txt', 'r') as r: | |
| random_texts[lang] = [line.strip() for line in r] | |
| def get_random_text(voice): | |
| lang = dict(a='en', b='en')[voice[0]] | |
| return random.choice(random_texts[lang]) | |
| CHOICES = { | |
| '🇺🇸 🚺 Heart ❤️': 'af_heart', | |
| '🇺🇸 🚺 Bella 🔥': 'af_bella', | |
| '🇺🇸 🚺 Nicole 🎧': 'af_nicole', | |
| '🇺🇸 🚺 Aoede': 'af_aoede', | |
| '🇺🇸 🚺 Kore': 'af_kore', | |
| '🇺🇸 🚺 Sarah': 'af_sarah', | |
| '🇺🇸 🚺 Nova': 'af_nova', | |
| '🇺🇸 🚺 Sky': 'af_sky', | |
| '🇺🇸 🚺 Alloy': 'af_alloy', | |
| '🇺🇸 🚺 Jessica': 'af_jessica', | |
| '🇺🇸 🚺 River': 'af_river', | |
| '🇺🇸 🚹 Michael': 'am_michael', | |
| '🇺🇸 🚹 Fenrir': 'am_fenrir', | |
| '🇺🇸 🚹 Puck': 'am_puck', | |
| '🇺🇸 🚹 Echo': 'am_echo', | |
| '🇺🇸 🚹 Eric': 'am_eric', | |
| '🇺🇸 🚹 Liam': 'am_liam', | |
| '🇺🇸 🚹 Onyx': 'am_onyx', | |
| '🇺🇸 🚹 Santa': 'am_santa', | |
| '🇺🇸 🚹 Adam': 'am_adam', | |
| '🇬🇧 🚺 Emma': 'bf_emma', | |
| '🇬🇧 🚺 Isabella': 'bf_isabella', | |
| '🇬🇧 🚺 Alice': 'bf_alice', | |
| '🇬🇧 🚺 Lily': 'bf_lily', | |
| '🇬🇧 🚹 George': 'bm_george', | |
| '🇬🇧 🚹 Fable': 'bm_fable', | |
| '🇬🇧 🚹 Lewis': 'bm_lewis', | |
| '🇬🇧 🚹 Daniel': 'bm_daniel', | |
| '🇪🇸 🚺 Dora': 'ef_dora', | |
| '🇪🇸 🚹 Alex': 'em_alex', | |
| '🇪🇸 🚹 Santa': 'em_santa', | |
| '🇫🇷 🚺 Siwis': 'ff_siwis', | |
| '🇮🇳 🚹 Alpha': 'hf_alpha', | |
| '🇮🇳 🚹 Beta': 'hf_beta', | |
| '🇮🇳 🚹 Omega': 'hm_omega', | |
| '🇮🇳 🚹 Psi': 'hm_psi', | |
| '🇮🇹 🚺 Sara': 'if_sara', | |
| '🇮🇹 🚺 Nicola': 'im_nicola', | |
| '🇯🇵 🚹 Alpha': 'jf_alpha', | |
| '🇯🇵 🚹 Gongitsune': 'jf_gongitsune', | |
| '🇯🇵 🚹 Nezumi': 'jf_nezumi', | |
| '🇯🇵 🚹 Tebukuro': 'jf_tebukuro', | |
| '🇯🇵 🚹 Kumo': 'jm_kumo', | |
| '🇧🇷 🚺 Dora': 'pf_dora', | |
| '🇧🇷 🚹 Alex': 'pm_alex', | |
| '🇧🇷 🚹 Santa': 'pm_santa', | |
| '🇨🇳 🚺 Xiaobei': 'zf_xiaobei', | |
| '🇨🇳 🚺 Xiaoni': 'zf_xiaoni', | |
| '🇨🇳 🚺 Xiaoxiao': 'zf_xiaoxiao', | |
| '🇨🇳 🚺 Xiaoyi': 'zf_xiaoyi', | |
| '🇨🇳 🚹 Yunjian': 'zm_yunjian', | |
| '🇨🇳 🚹 Yunxi': 'zm_yunxi', | |
| '🇨🇳 🚹 Yunxia': 'zm_yunxia', | |
| '🇨🇳 🚹 Yunyang': 'zm_yunyang', | |
| } | |
| for v in CHOICES.values(): | |
| pipelines[v[0]].load_voice(v) | |
| with gr.Blocks() as generate_tab: | |
| out_audio = gr.Audio(label='Output Audio', interactive=False, streaming=False, autoplay=True) | |
| generate_btn = gr.Button('Generate', variant='primary') | |
| with gr.Accordion('Output Tokens', open=True): | |
| out_ps = gr.Textbox(interactive=False, show_label=False, info='Tokens used to generate the audio, up to 510 context length.') | |
| tokenize_btn = gr.Button('Tokenize', variant='secondary') | |
| predict_btn = gr.Button('Predict', variant='secondary', visible=False) | |
| BANNER_TEXT = ''' | |
| [***Kokoro*** **is an open-weight TTS model with 82 million parameters.**](https://huggingface.co/hexgrad/Kokoro-82M) | |
| As of January 31st, 2025, Kokoro was the most-liked [**TTS model**](https://huggingface.co/models?pipeline_tag=text-to-speech&sort=likes) and the most-liked [**TTS space**](https://huggingface.co/spaces?sort=likes&search=tts) on Hugging Face. | |
| This demo only showcases English, but you can directly use the model to access other languages. | |
| ''' | |
| API_OPEN = os.getenv('SPACE_ID') != 'hexgrad/Kokoro-TTS' | |
| API_NAME = None if API_OPEN else False | |
| with gr.Blocks() as app: | |
| with gr.Row(): | |
| gr.Markdown(BANNER_TEXT, container=True) | |
| with gr.Row(): | |
| with gr.Column(): | |
| text = gr.Textbox(label='Input Text', info=f"Up to ~500 characters per Generate, or {'∞' if CHAR_LIMIT is None else CHAR_LIMIT} characters per Stream") | |
| with gr.Row(): | |
| voice = gr.Dropdown(list(CHOICES.items()), value='af_heart', label='Voice', info='Quality and availability vary by language') | |
| use_gpu = gr.Dropdown( | |
| [('ZeroGPU 🚀', True), ('CPU 🐌', False)], | |
| value=CUDA_AVAILABLE, | |
| label='Hardware', | |
| info='GPU is usually faster, but has a usage quota', | |
| interactive=CUDA_AVAILABLE | |
| ) | |
| speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label='Speed') | |
| random_btn = gr.Button('Random Text', variant='secondary') | |
| with gr.Column(): | |
| gr.TabbedInterface([generate_tab], ['Generate']) | |
| random_btn.click(fn=get_random_text, inputs=[voice], outputs=[text], api_name=API_NAME) | |
| generate_btn.click(fn=generate_first, inputs=[text, voice, speed, use_gpu], outputs=[out_audio, out_ps], api_name=API_NAME) | |
| tokenize_btn.click(fn=tokenize_first, inputs=[text, voice], outputs=[out_ps], api_name=API_NAME) | |
| predict_btn.click(fn=predict, inputs=[text, voice, speed], outputs=[out_audio], api_name=API_NAME) | |
| if __name__ == '__main__': | |
| app.queue(api_open=API_OPEN).launch(show_api=API_OPEN, ssr_mode=True) |